Search results
Results from the WOW.Com Content Network
A solution of a carbonyl compound is added to a Grignard reagent. (See gallery) An example of a Grignard reaction (R 2 or R 3 could be hydrogen). The Grignard reaction (French:) is an organometallic chemical reaction in which, according to the classical definition, carbon alkyl, allyl, vinyl, or aryl magnesium halides (Grignard reagent) are added to the carbonyl groups of either an aldehyde or ...
Grignard reagents or Grignard compounds are chemical compounds with the general formula R−Mg−X, where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride Cl−Mg−CH 3 and phenylmagnesium bromide (C 6 H 5)−Mg−Br. They are a subclass of the organomagnesium compounds.
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Stable tetrahedral intermediates of carboxylic acid derivatives do exist and they usually possess at least one of the following four structural features: polycyclic structures (e.g. tetrodotoxin) [5] Tetrodotoxin; compounds with a strong electron-withdrawing group attached to the acyl carbon (e.g. N,N-dimethyltrifluoroacetamide) [6]
Examples of orthoesters include the reagents trimethyl orthoformate and triethylorthoacetate. Another example is the bicyclic OBO protecting group (4-methyl-2,6,7-trioxa-bicyclo[2.2.2]octan-1-yl) which is formed by the action of (3-methyloxetan-3-yl)methanol on activated carboxylic acids in the presence of Lewis acids. The group is base stable ...
The first step of the Bouveault aldehyde synthesis is the formation of the Grignard reagent. Upon addition of a N , N -disubstituted formamide (such as dimethylformamide ) a hemiaminal is formed, which can easily be hydrolyzed into the desired aldehyde.
The direct oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R−CH(OH) 2) by reaction with water before it can be further oxidized to the carboxylic acid. Mechanism of oxidation of primary alcohols to carboxylic acids via aldehydes and aldehyde hydrates
The Kulinkovich reaction describes the organic synthesis of substituted cyclopropanols through reaction of esters with dialkyldialkoxytitanium reagents, which are generated in situ from Grignard reagents containing a hydrogen in beta-position and titanium(IV) alkoxides such as titanium isopropoxide. [1]