Search results
Results from the WOW.Com Content Network
Data validation is intended to provide certain well-defined guarantees for fitness and consistency of data in an application or automated system. Data validation rules can be defined and designed using various methodologies, and be deployed in various contexts. [1]
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Data integrity often includes checks and correction for invalid data, based on a fixed schema or a predefined set of rules. An example being textual data entered where a date-time value is required. Rules for data derivation are also applicable, specifying how a data value is derived based on algorithm, contributors and conditions.
User input validation: User input (gathered by any peripheral such as a keyboard, bio-metric sensor, etc.) is validated by checking if the input provided by the software operators or users meets the domain rules and constraints (such as data type, range, and format).
Data reconciliation is a technique that targets at correcting measurement errors that are due to measurement noise, i.e. random errors.From a statistical point of view the main assumption is that no systematic errors exist in the set of measurements, since they may bias the reconciliation results and reduce the robustness of the reconciliation.
Verification and validation - Wikipedia
XML validation is the process of checking a document written in XML (eXtensible Markup Language) to confirm that it is both well-formed and also "valid" in that it follows a defined structure. A well-formed document follows the basic syntactic rules of XML, which are the same for all XML documents. [ 1 ]
Referential integrity is a property of data stating that all its references are valid. In the context of relational databases , it requires that if a value of one attribute (column) of a relation (table) references a value of another attribute (either in the same or a different relation), then the referenced value must exist.