Search results
Results from the WOW.Com Content Network
The density of air or atmospheric density, denoted ρ, [1] is the mass per unit volume of Earth's atmosphere. Air density, like air pressure, decreases with increasing altitude. It also changes with variations in atmospheric pressure, temperature and humidity.
The density of air at sea level is about 1.2 kg/m 3 (1.2 g/L, 0.0012 g/cm 3). Density is not measured directly but is calculated from measurements of temperature, pressure and humidity using the equation of state for air (a form of the ideal gas law). Atmospheric density decreases as the altitude increases.
The density altitude is the altitude relative to standard atmospheric conditions at which the air density would be equal to the indicated air density at the place of observation. In other words, the density altitude is the air density given as a height above mean sea level .
at each geopotential altitude, where g is the standard acceleration of gravity, and R specific is the specific gas constant for dry air (287.0528J⋅kg −1 ⋅K −1). The solution is given by the barometric formula. Air density must be calculated in order to solve for the pressure, and is used in calculating dynamic pressure for moving vehicles.
= molar mass of Earth's air: 0.0289644 kg/mol The value of subscript b ranges from 0 to 6 in accordance with each of seven successive layers of the atmosphere shown in the table below. The reference value for ρ b for b = 0 is the defined sea level value, ρ 0 = 1.2250 kg/m 3 or 0.0023768908 slug/ft 3 .
Different air masses which affect North America as well as other continents, tend to be separated by frontal boundaries. In meteorology, an air mass is a volume of air defined by its temperature and humidity. Air masses cover many hundreds or thousands of square miles, and adapt to the
Air density must be calculated in order to solve for the pressure, and is used in calculating dynamic pressure for moving vehicles. Dynamic viscosity is an empirical function of temperature, and kinematic viscosity is calculated by dividing dynamic viscosity by the density.
The density of the Earth's atmosphere decreases nearly exponentially with altitude. The total mass of the atmosphere is M = ρ A H ≃ 1 kg/cm 2 within a column of one square centimeter above the ground (with ρ A = 1.29 kg/m 3 the atmospheric density on the ground at z = 0 m altitude, and H ≃ 8 km the average atmospheric scale height).