Search results
Results from the WOW.Com Content Network
Although ERA is intended to replace sidereal time, there is a need to maintain definitions for sidereal time during the transition, and when working with older data and documents. Similarly to mean solar time, every location on Earth has its own local sidereal time (LST), depending on the longitude of the point.
The equation of time is the east or west component of the analemma, a curve representing the angular offset of the Sun from its mean position on the celestial sphere as viewed from Earth. The equation of time values for each day of the year, compiled by astronomical observatories, were widely listed in almanacs and ephemerides. [2] [3]: 14
The local hour angle (LHA) of an object in the observer's sky is = or = + where LHA object is the local hour angle of the object, LST is the local sidereal time, is the object's right ascension, GST is Greenwich sidereal time and is the observer's longitude (positive east from the prime meridian). [3]
As seen from above the Earth's north pole, a star's local hour angle (LHA) for an observer near New York. Also depicted are the star's right ascension and Greenwich hour angle (GHA), the local mean sidereal time (LMST) and Greenwich mean sidereal time (GMST). The symbol ♈︎ identifies the March equinox direction.
On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...
A sidereal rotation is the time it takes the Earth to make one revolution with rotation to the stars, approximately 23 hours 56 minutes 4 seconds. A mean solar day is about 3 minutes 56 seconds longer than a mean sidereal day, or 1 ⁄ 366 more than a mean sidereal day. In astronomy, sidereal time is used to predict when a star will reach its ...
The equation of time — above the axis a sundial will appear fast relative to a clock showing local mean time, and below the axis a sundial will appear slow.. Local mean time (LMT) is a form of solar time that corrects the variations of local apparent time, forming a uniform time scale at a specific longitude.
The time for one complete rotation is 23 hours, 56 minutes, and 4.09 seconds – one sidereal day. The first experimental demonstration of this motion was conducted by Léon Foucault. Because Earth orbits the Sun once a year, the sidereal time at any given place and time will gain about four minutes against local civil time, every 24 hours ...