Search results
Results from the WOW.Com Content Network
Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]
Thus, to get current density from molar flux one needs to multiply by Faraday's constant F (Coulombs/mol). F will then cancel from the equation below. Since the valence has already been accounted for above, the charge q A of each ion in the equation above, therefore, should be interpreted as +1 or -1 depending on the polarity of the ion.
A commonly used equation that describes the behavior of low-cycle fatigue is the Coffin-Manson relation (published by L. F. Coffin in 1954 and S. S. Manson in 1953):
The Goodman line is a method used to estimate the influence of the mean stress on the fatigue strength. A Constant Fatigue Life (CFL) diagram is useful for stress ratio effect on S-N curve. [35] Also, in the presence of a steady stress superimposed on the cyclic loading, the Goodman relation can be used to estimate a failure condition.
In statistics, Goodman and Kruskal's gamma is a measure of rank correlation, i.e., the similarity of the orderings of the data when ranked by each of the quantities. It measures the strength of association of the cross tabulated data when both variables are measured at the ordinal level .
In contrast, making it easier or cheaper to get a mortgage addresses the demand side of the equation. ... Goodman said. “The federal government's role really is money-related,” she said. “So ...
Although Goodman and Kruskal's lambda is a simple way to assess the association between variables, it yields a value of 0 (no association) whenever two variables are in accord—that is, when the modal category is the same for all values of the independent variable, even if the modal frequencies or percentages vary. As an example, consider the ...
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening ), showing a smooth elastic-plastic transition.