Search results
Results from the WOW.Com Content Network
Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.
Ramanujan's sum. In number theory, Ramanujan's sum, usually denoted cq (n), is a function of two positive integer variables q and n defined by the formula. where (a, q) = 1 means that a only takes on values coprime to q. Srinivasa Ramanujan mentioned the sums in a 1918 paper. [1]
Ramanujan summation is a method to isolate the constant term in the Euler–Maclaurin formula for the partial sums of a series. For a function f , the classical Ramanujan sum of the series ∑ k = 1 ∞ f ( k ) {\displaystyle \textstyle \sum _{k=1}^{\infty }f(k)} is defined as
Ramanujan–Sato series. In mathematics, a Ramanujan–Sato series[1][2] generalizes Ramanujan ’s pi formulas such as, to the form. by using other well-defined sequences of integers obeying a certain recurrence relation, sequences which may be expressed in terms of binomial coefficients , and employing modular forms of higher levels.
Srinivasa Ramanujan Aiyangar [a] (22 December 1887 – 26 April 1920) was an Indian mathematician.Often regarded as one of the greatest mathematicians of all time, though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems then ...
In mathematics, Ramanujan's master theorem, named after Srinivasa Ramanujan, [1] is a technique that provides an analytic expression for the Mellin transform of an analytic function. Page from Ramanujan's notebook stating his Master theorem. The result is stated as follows: If a complex-valued function.
In mathematics, Ramanujan's congruences are the congruences for the partition function p (n) discovered by Srinivasa Ramanujan: In plain words, e.g., the first congruence means that If a number is 4 more than a multiple of 5, i.e. it is in the sequence. 4, 9, 14, 19, 24, 29, . . . then the number of its partitions is a multiple of 5.
The identities were first discovered and proved by Leonard James Rogers (1894), and were subsequently rediscovered (without a proof) by Srinivasa Ramanujan some time before 1913. Ramanujan had no proof, but rediscovered Rogers's paper in 1917, and they then published a joint new proof (Rogers & Ramanujan 1919).