enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Autotroph - Wikipedia

    en.wikipedia.org/wiki/Autotroph

    Autotrophs possibly evolved into heterotrophs when they were at low H 2 partial pressures where the first form of heterotrophy were likely amino acid and clostridial type purine fermentations. [19] It has been suggested that photosynthesis emerged in the presence of faint near infrared light emitted by hydrothermal vents.

  3. Photoautotroph - Wikipedia

    en.wikipedia.org/wiki/Photoautotroph

    Cyanobacteria is the only prokaryotic group that performs oxygenic photosynthesis. Anoxygenic photosynthetic bacteria use PSI- and PSII-like photosystems, which are pigment protein complexes for capturing light. [5] Both of these photosystems use bacteriochlorophyll. There are multiple hypotheses for how oxygenic photosynthesis evolved.

  4. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).

  5. Terrestrial biological carbon cycle - Wikipedia

    en.wikipedia.org/wiki/Terrestrial_biological...

    Autotrophs, such as trees and other green plants, use photosynthesis to convert carbon dioxide during primary production, releasing oxygen in the process. This process occurs most quickly in ecosystems with high amounts of growth, such as in young forests.

  6. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    Cornelis Van Niel made key discoveries explaining the chemistry of photosynthesis. By studying purple sulfur bacteria and green bacteria , he was the first to demonstrate that photosynthesis is a light-dependent redox reaction in which hydrogen reduces (donates its atoms as electrons and protons to) carbon dioxide.

  7. Carbon source (biology) - Wikipedia

    en.wikipedia.org/wiki/Carbon_source_(biology)

    An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms.Autotrophs produce complex organic compounds (such as carbohydrates, fats, and proteins) using carbon from simple substances such as carbon dioxide, [1] generally using energy from light or inorganic chemical reactions. [2]

  8. Marine protists - Wikipedia

    en.wikipedia.org/wiki/Marine_protists

    Autotrophic protists that make their own food without needing to consume other organisms, usually by photosynthesis (sometimes by chemosynthesis) Green algae, Pyramimonas: Red and brown algae, diatoms, coccolithophores and some dinoflagellates. Plant-like protists are important components of phytoplankton discussed below. Animal-like

  9. Marine primary production - Wikipedia

    en.wikipedia.org/wiki/Marine_primary_production

    Chloroplasts (from the Greek chloros for green, and plastes for "the one who forms" [31]) are organelles that conduct photosynthesis, where the photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in the energy-storage molecules while freeing oxygen from water in plant and algal cells.