Search results
Results from the WOW.Com Content Network
Provides classification and regression datasets in a standardized format that are accessible through a Python API. Metatext NLP: https://metatext.io/datasets web repository maintained by community, containing nearly 1000 benchmark datasets, and counting.
Each node in a classification tree represents a class (concept) and is labeled by a probabilistic concept that summarizes the attribute-value distributions of objects classified under the node. This classification tree can be used to predict missing attributes or the class of a new object.
Tanagra is a free suite of machine learning software for research and academic purposes developed by Ricco Rakotomalala at the Lumière University Lyon 2, France. [1] [2] Tanagra supports several standard data mining tasks such as: Visualization, Descriptive statistics, Instance selection, feature selection, feature construction, regression, factor analysis, clustering, classification and ...
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Decision trees used in data mining are of two main types: Classification tree analysis is when the predicted outcome is the class (discrete) to which the data belongs. Regression tree analysis is when the predicted outcome can be considered a real number (e.g. the price of a house, or a patient's length of stay in a hospital).
CURE (no. of points,k) Input : A set of points S Output : k clusters For every cluster u (each input point), in u.mean and u.rep store the mean of the points in the cluster and a set of c representative points of the cluster (initially c = 1 since each cluster has one data point).
The COBWEB data structure is a hierarchy (tree) wherein each node represents a given concept. Each concept represents a set (actually, a multiset or bag) of objects, each object being represented as a binary-valued property list. The data associated with each tree node (i.e., concept) are the integer property counts for the objects in that concept.
In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). For example, deciding on whether an image is showing a banana, an orange, or an ...