enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Particle swarm optimization - Wikipedia

    en.wikipedia.org/wiki/Particle_swarm_optimization

    However, APSO will introduce new algorithm parameters, it does not introduce additional design or implementation complexity nonetheless. Besides, through the utilization of a scale-adaptive fitness evaluation mechanism, PSO can efficiently address computationally expensive optimization problems.

  3. Learning curve (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Learning_curve_(machine...

    Many optimization algorithms are iterative, repeating the same step (such as backpropagation) until the process converges to an optimal value. Gradient descent is one such algorithm. If θ i ∗ {\displaystyle \theta _{i}^{*}} is the approximation of the optimal θ {\displaystyle \theta } after i {\displaystyle i} steps, a learning curve is the ...

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  5. Computational learning theory - Wikipedia

    en.wikipedia.org/wiki/Computational_learning_theory

    Online machine learning, from the work of Nick Littlestone [citation needed]. While its primary goal is to understand learning abstractly, computational learning theory has led to the development of practical algorithms. For example, PAC theory inspired boosting, VC theory led to support vector machines, and Bayesian inference led to belief ...

  6. Skew heap - Wikipedia

    en.wikipedia.org/wiki/Skew_heap

    A skew heap (or self-adjusting heap) is a heap data structure implemented as a binary tree. Skew heaps are advantageous because of their ability to merge more quickly than binary heaps. In contrast with binary heaps, there are no structural constraints, so there is no guarantee that the height of the tree is logarithmic. Only two conditions ...

  7. Self-modifying code - Wikipedia

    en.wikipedia.org/wiki/Self-modifying_code

    Traditional machine learning systems have a fixed, pre-programmed learning algorithm to adjust their parameters. However, since the 1980s Jürgen Schmidhuber has published several self-modifying systems with the ability to change their own learning

  8. Self-play - Wikipedia

    en.wikipedia.org/wiki/Self-play

    Self-play is a technique for improving the performance of reinforcement learning agents. Intuitively, agents learn to improve their performance by playing "against themselves". Intuitively, agents learn to improve their performance by playing "against themselves".

  9. AdaBoost - Wikipedia

    en.wikipedia.org/wiki/AdaBoost

    Every learning algorithm tends to suit some problem types better than others, and typically has many different parameters and configurations to adjust before it achieves optimal performance on a dataset. AdaBoost (with decision trees as the weak learners) is often referred to as the best out-of-the-box classifier.