Search results
Results from the WOW.Com Content Network
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law [1] of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called the electrostatic force or Coulomb force . [ 2 ]
Coulomb's law states that: [5] The magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them. The force is along the straight line joining them.
Relativistic electromagnetism is a physical phenomenon explained in electromagnetic field theory due to Coulomb's law and Lorentz transformations.
Coulomb's law and Newton's law of universal gravitation are based on action at a distance. Historically, action at a distance was the earliest scientific model for gravity and electricity and it continues to be useful in many practical cases. In the 19th and 20th centuries, field models arose to explain these phenomena with more precision.
When talking about electrostatic potential energy, time-invariant electric fields are always assumed so, in this case, the electric field is conservative and Coulomb's law can be used. Using Coulomb's law, it is known that the electrostatic force F and the electric field E created by a discrete point charge Q are radially directed from Q.
The divergence of a vector field which is the resultant of radial inverse-square law fields with respect to one or more sources is proportional to the strength of the local sources, and hence zero outside sources. Newton's law of universal gravitation follows an inverse-square law, as do the effects of electric, light, sound, and radiation ...
Analogously, Coulomb's law is the fundamental law that describes the force that charged objects exert on one another. It is given by the formula = where F is the force, k e is the Coulomb constant, q 1 and q 2 are the magnitudes of the two charges, and r 2 is the square of the distance between them. It describes the fact that like charges repel ...
Macroscopic charged objects are described in terms of Coulomb's law for electricity and Ampère's force law for magnetism; the Lorentz force describes microscopic charged particles. The electromagnetic force is responsible for many of the chemical and physical phenomena observed in daily life.