Search results
Results from the WOW.Com Content Network
There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...
An upper bound is said to be a tight upper bound, a least upper bound, or a supremum, if no smaller value is an upper bound. Similarly, a lower bound is said to be a tight lower bound, a greatest lower bound, or an infimum, if no greater value is a lower bound.
A real number x is the least upper bound (or supremum) for S if x is an upper bound for S and x ≤ y for every upper bound y of S. The least-upper-bound property states that any non-empty set of real numbers that has an upper bound must have a least upper bound in real numbers.
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
Thus, the infimum or meet of a collection of subsets is the greatest lower bound while the supremum or join is the least upper bound. In this context, the inner limit, lim inf X n, is the largest meeting of tails of the sequence, and the outer limit, lim sup X n, is the smallest joining of tails of the sequence. The following makes this precise.
The set {,} has upper bounds and , but no least upper bound, and no greatest element (cf. picture). In the rational numbers, the set of numbers with their square less than 2 has upper bounds but no greatest element and no least upper bound.
In a directed set, every pair of elements (particularly pairs of incomparable elements) has a common upper bound within the set. If a directed set has a maximal element, it is also its greatest element, [proof 7] and hence its only maximal element. For a directed set without maximal or greatest elements, see examples 1 and 2 above.
Hence, we have found the least upper bound of a set of sets. This concept is also called supremum or join, and for a set S one writes sup(S) or for its least upper bound. Conversely, the greatest lower bound is known as infimum or meet and denoted inf(S) or . These concepts play an important role in many applications of order theory.