enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gibbard–Satterthwaite theorem - Wikipedia

    en.wikipedia.org/wiki/GibbardSatterthwaite...

    The Gibbard–Satterthwaite theorem is a theorem in social choice theory.It was first conjectured by the philosopher Michael Dummett and the mathematician Robin Farquharson in 1961 [1] and then proved independently by the philosopher Allan Gibbard in 1973 [2] and economist Mark Satterthwaite in 1975. [3]

  3. Gibbard's theorem - Wikipedia

    en.wikipedia.org/wiki/Gibbard's_theorem

    A corollary of this theorem is the Gibbard–Satterthwaite theorem about voting rules. The key difference between the two theorems is that Gibbard–Satterthwaite applies only to ranked voting. Because of its broader scope, Gibbard's theorem makes no claim about whether voters need to reverse their ranking of candidates, only that their optimal ...

  4. Social choice theory - Wikipedia

    en.wikipedia.org/wiki/Social_choice_theory

    The Gibbard–Satterthwaite theorem implies that the only rule satisfying non-imposition (every alternative can be chosen) and strategyproofness when there are more than two candidates is the dictatorship mechanism. That is, a voter may be able to cast a ballot that misrepresents their preferences to obtain a result that is more favorable to ...

  5. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    Gibbard's theorem shows that any strategyproof game form (i.e. one with a dominant strategy) with more than two outcomes is dictatorial. The Gibbard–Satterthwaite theorem is a special case showing that no deterministic voting system can be fully invulnerable to strategic voting in all circumstances, regardless of how others vote.

  6. Mechanism design - Wikipedia

    en.wikipedia.org/wiki/Mechanism_design

    Gibbard and Satterthwaite give an impossibility result similar in spirit to Arrow's impossibility theorem. For a very general class of games, only "dictatorial" social choice functions can be implemented. A social choice function f() is dictatorial if one agent always receives his most-favored goods allocation,

  7. The End of the Voting Methods Debate - AOL

    www.aol.com/news/end-voting-methods-debate...

    AADV promises to fix problems with voting methods to the greatest extent that they can be fixed, and thereby end the debate. Here is the logic that supports that claim. ... (Gibbard-Satterthwaite ...

  8. Computational social choice - Wikipedia

    en.wikipedia.org/wiki/Computational_social_choice

    Restricted preference domains, such as single-peaked or single-crossing preferences, are an important area of study in social choice theory, since preferences from these domains avoid the Condorcet paradox and thus can circumvent impossibility results like Arrow's theorem and the Gibbard-Satterthwaite theorem.

  9. Arrow's impossibility theorem - Wikipedia

    en.wikipedia.org/wiki/Arrow's_impossibility_theorem

    Arrow's theorem does not cover rated voting rules, and thus cannot be used to inform their susceptibility to the spoiler effect. However, Gibbard's theorem shows these methods' susceptibility to strategic voting, and generalizations of Arrow's theorem describe cases where rated methods are susceptible to the spoiler effect.