enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...

  3. Sturges's rule - Wikipedia

    en.wikipedia.org/wiki/Sturges's_rule

    This rule is widely employed in data analysis software including Python [2] and R, where it is the default bin selection method. [3] Sturges's rule comes from the binomial distribution which is used as a discrete approximation to the normal distribution. [4] If the function to be approximated is binomially distributed then

  4. Folded normal distribution - Wikipedia

    en.wikipedia.org/wiki/Folded_normal_distribution

    The folded normal distribution is a probability distribution related to the normal distribution. Given a normally distributed random variable X with mean μ and variance σ 2, the random variable Y = |X| has a folded normal distribution. Such a case may be encountered if only the magnitude of some variable is recorded, but not its sign.

  5. File:Normal Distribution PDF.svg - Wikipedia

    en.wikipedia.org/wiki/File:Normal_Distribution...

    English: A selection of Normal Distribution Probability Density Functions (PDFs). Both the mean, μ , and variance, σ² , are varied. The key is given on the graph.

  6. Box–Muller transform - Wikipedia

    en.wikipedia.org/wiki/Box–Muller_transform

    The basic form requires two multiplications, 1/2 logarithm, 1/2 square root, and one trigonometric function for each normal variate. [10] On some processors, the cosine and sine of the same argument can be calculated in parallel using a single instruction.

  7. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    The fact that two random variables and both have a normal distribution does not imply that the pair (,) has a joint normal distribution. A simple example is one in which X has a normal distribution with expected value 0 and variance 1, and = if | | > and = if | | <, where >. There are similar counterexamples for more than two random variables.

  8. Truncated normal distribution - Wikipedia

    en.wikipedia.org/wiki/Truncated_normal_distribution

    In probability and statistics, the truncated normal distribution is the probability distribution derived from that of a normally distributed random variable by bounding the random variable from either below or above (or both). The truncated normal distribution has wide applications in statistics and econometrics.

  9. Inverse transform sampling - Wikipedia

    en.wikipedia.org/wiki/Inverse_transform_sampling

    Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, or the Smirnov transform) is a basic method for pseudo-random number sampling, i.e., for generating sample numbers at random from any probability distribution given its cumulative distribution function.