Search results
Results from the WOW.Com Content Network
An integral, or intrinsic, membrane protein (IMP) [1] is a type of membrane protein that is permanently attached to the biological membrane. All transmembrane proteins can be classified as IMPs, but not all IMPs are transmembrane proteins. [ 2 ]
Membrane proteins fall into several broad categories depending on their location. Integral membrane proteins are a permanent part of a cell membrane and can either penetrate the membrane (transmembrane) or associate with one or the other side of a membrane (integral monotopic).
Schematic representation of transmembrane proteins: 1) a single-pass membrane protein 2) a multipass membrane protein (α-helix) 3) a multipass membrane protein β-sheet. The membrane is represented in light yellow. A transmembrane protein is a type of integral membrane protein that spans the entirety of the cell membrane.
Transmembrane proteins (8 C, 197 P) Pages in category "Integral membrane proteins" The following 200 pages are in this category, out of approximately 241 total.
The protein is located in the inner mitochondrial membrane and transports phosphate ions for use in oxidative phosphorylation. It became known as the phosphate-hydroxide antiporter, or mitochondrial phosphate carrier protein, and was the first example of an antiporter identified in living cells. [13] [14]
Examples of integral proteins include ion channels, proton pumps, and g-protein coupled receptors. Ion channels allow inorganic ions such as sodium, potassium, calcium, or chlorine to diffuse down their electrochemical gradient across the lipid bilayer through hydrophilic pores across the membrane.
A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane proteins ; that is they exist permanently within and span the membrane across which they transport substances.
Integral proteins hold strong association with the lipid bilayer and cannot easily become detached. [9] They will dissociate only with chemical treatment that breaks the membrane. Peripheral proteins are unlike integral proteins in that they hold weak interactions with the surface of the bilayer and can easily become dissociated from the ...