enow.com Web Search

  1. Ads

    related to: laplace operators in geometry definition pdf worksheet

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace operators in differential geometry - Wikipedia

    en.wikipedia.org/wiki/Laplace_operators_in...

    The Hodge Laplacian, also known as the Laplace–de Rham operator, is a differential operator acting on differential forms. (Abstractly, it is a second order operator on each exterior power of the cotangent bundle.) This operator is defined on any manifold equipped with a Riemannian- or pseudo-Riemannian metric.

  3. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    Laplace–Beltrami operator, generalization to submanifolds in Euclidean space and Riemannian and pseudo-Riemannian manifold. The Laplacian in differential geometry. The discrete Laplace operator is a finite-difference analog of the continuous Laplacian, defined on graphs and grids.

  4. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    When computing the Laplace–de Rham operator on a scalar function f, we have δf = 0, so that =. Up to an overall sign, the Laplace–de Rham operator is equivalent to the previous definition of the Laplace–Beltrami operator when acting on a scalar function; see the proof for details.

  5. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Gradient, divergence, Laplace–Beltrami operator [ edit ] The gradient of a function ϕ {\displaystyle \phi } is obtained by raising the index of the differential ∂ i ϕ d x i {\displaystyle \partial _{i}\phi dx^{i}} , whose components are given by:

  6. Spectral shape analysis - Wikipedia

    en.wikipedia.org/wiki/Spectral_shape_analysis

    Spectral shape analysis relies on the spectrum (eigenvalues and/or eigenfunctions) of the Laplace–Beltrami operator to compare and analyze geometric shapes. Since the spectrum of the Laplace–Beltrami operator is invariant under isometries, it is well suited for the analysis or retrieval of non-rigid shapes, i.e. bendable objects such as humans, animals, plants, etc.

  7. Spectral geometry - Wikipedia

    en.wikipedia.org/wiki/Spectral_geometry

    Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry ...

  8. Liouville's equation - Wikipedia

    en.wikipedia.org/wiki/Liouville's_equation

    In differential geometry, Liouville's equation, named after Joseph Liouville, [1] [2] is the nonlinear partial differential equation satisfied by the conformal factor f of a metric f 2 (dx 2 + dy 2) on a surface of constant Gaussian curvature K: ⁡ =, where ∆ 0 is the flat Laplace operator

  9. Infinity Laplacian - Wikipedia

    en.wikipedia.org/wiki/Infinity_Laplacian

    In mathematics, the infinity Laplace (or -Laplace) operator is a 2nd-order partial differential operator, commonly abbreviated .It is alternately defined, for a function : of the variables = (, …,), by

  1. Ads

    related to: laplace operators in geometry definition pdf worksheet