enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Star position - Wikipedia

    en.wikipedia.org/wiki/Star_position

    The observation techniques are topics of positional astronomy and of astrogeodesy. Ideally, the Cartesian coordinate system (α, δ) refers to an inertial frame of reference. The third coordinate is the star's distance, which is normally used as an attribute of the individual star. The following factors change star positions over time:

  3. Zenith - Wikipedia

    en.wikipedia.org/wiki/Zenith

    Zenith stars (also "star on top", "overhead star", "latitude star") [7] are stars whose declination equals the latitude of the observers location, and hence at some time in the day or night pass culminate (pass) through the zenith. When at the zenith the right ascension of the star equals the local sidereal time at your location.

  4. Star chart - Wikipedia

    en.wikipedia.org/wiki/Star_chart

    Because of precession, the positions of the constellations slowly change over time. By comparing the positions of the 41 constellations against the grid circles, an accurate determination can be made of the epoch when the original observations were performed. Based upon this information, the constellations were catalogued at 125 ± 55 BC.

  5. Astronomical coordinate systems - Wikipedia

    en.wikipedia.org/wiki/Astronomical_coordinate...

    In astronomy, coordinate systems are used for specifying positions of celestial objects (satellites, planets, stars, galaxies, etc.) relative to a given reference frame, based on physical reference points available to a situated observer (e.g. the true horizon and north to an observer on Earth's surface). [1]

  6. Solar time - Wikipedia

    en.wikipedia.org/wiki/Solar_time

    On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...

  7. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics ( classical mechanics ) to astronomical objects, such as stars and planets , to produce ephemeris data.

  8. Equation of time - Wikipedia

    en.wikipedia.org/wiki/Equation_of_time

    The United States Naval Observatory states "the Equation of Time is the difference apparent solar time minus mean solar time", i.e. if the sun is ahead of the clock the sign is positive, and if the clock is ahead of the sun the sign is negative. [6] [7] The equation of time is shown in the upper graph above for a period of slightly more than a ...

  9. Proper motion - Wikipedia

    en.wikipedia.org/wiki/Proper_motion

    [2] [3] It has dimensions of angle per time, typically arcseconds per year or milliarcseconds per year. Knowledge of the proper motion, distance, and radial velocity allows calculations of an object's motion from the Solar System's frame of reference and its motion from the galactic frame of reference – that is motion in respect to the Sun ...