Search results
Results from the WOW.Com Content Network
A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).
The ordinary Lyapunov function is used to test whether a dynamical system is (Lyapunov) stable or (more restrictively) asymptotically stable. Lyapunov stability means that if the system starts in a state x ≠ 0 {\displaystyle x\neq 0} in some domain D , then the state will remain in D for all time.
A Lyapunov function is a nonnegative scalar measure of this multi-dimensional state. Typically, the function is defined to grow large when the system moves towards undesirable states. System stability is achieved by taking control actions that make the Lyapunov function drift in the negative direction towards zero.
In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is A X A H − X + Q = 0 {\displaystyle AXA^{H}-X+Q=0} where Q {\displaystyle Q} is a Hermitian matrix and A H {\displaystyle A^{H}} is the conjugate transpose of A {\displaystyle A} , while the continuous-time Lyapunov equation is
Conley's decomposition is characterized by a function known as complete Lyapunov function. Unlike traditional Lyapunov functions that are used to assert the stability of an equilibrium point (or a fixed point) and can be defined only on the basin of attraction of the corresponding attractor, complete Lyapunov functions must be defined on the whole phase-portrait.
First, a non-negative function L(t) is defined as a scalar measure of the state of all queues at time t. The function L(t) is typically defined as the sum of the squares of all queue sizes at time t, and is called a Lyapunov function. The Lyapunov drift is defined: = (+) ()
Jan C. Willems Introduced the concept of dissipativity, as a generalization of Lyapunov function to input/state/output systems. The construction of the storage function, as the analogue of a Lyapunov function is called, led to the study of the linear matrix inequality (LMI) in control theory. He pioneered the behavioral approach to mathematical ...
At this time, the Lyapunov exponent λ is maximized, and the state is the most chaotic . The value of λ for the logistic map at r = 4 can be calculated precisely, and its value is λ = log 2 . Although a strict mathematical definition of chaos has not yet been unified, it can be shown that the logistic map with r = 4 is chaotic on [0, 1 ...