enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_function

    A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).

  3. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [ 1 ] [ 2 ] In particular, the discrete-time Lyapunov equation (also known as Stein equation ) for X {\displaystyle X} is

  4. Lyapunov exponent - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_exponent

    Lyapunov proved that if the system of the first approximation is regular (e.g., all systems with constant and periodic coefficients are regular) and its largest Lyapunov exponent is negative, then the solution of the original system is asymptotically Lyapunov stable. Later, it was stated by O. Perron that the requirement of regularity of the ...

  5. Lyapunov optimization - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_optimization

    A Lyapunov function is a nonnegative scalar measure of this multi-dimensional state. Typically, the function is defined to grow large when the system moves towards undesirable states. System stability is achieved by taking control actions that make the Lyapunov function drift in the negative direction towards zero.

  6. Conley's fundamental theorem of dynamical systems - Wikipedia

    en.wikipedia.org/wiki/Conley's_fundamental...

    Conley's decomposition is characterized by a function known as complete Lyapunov function. Unlike traditional Lyapunov functions that are used to assert the stability of an equilibrium point (or a fixed point) and can be defined only on the basin of attraction of the corresponding attractor, complete Lyapunov functions must be defined on the whole phase-portrait.

  7. Control-Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Control-Lyapunov_function

    The ordinary Lyapunov function is used to test whether a dynamical system is (Lyapunov) stable or (more restrictively) asymptotically stable. Lyapunov stability means that if the system starts in a state x ≠ 0 {\displaystyle x\neq 0} in some domain D , then the state will remain in D for all time.

  8. Massera's lemma - Wikipedia

    en.wikipedia.org/wiki/Massera's_lemma

    In stability theory and nonlinear control, Massera's lemma, named after José Luis Massera, deals with the construction of the Lyapunov function to prove the stability of a dynamical system. [1] The lemma appears in (Massera 1949, p. 716) as the first lemma in section 12, and in more general form in (Massera 1956, p. 195) as lemma 2. In 2004 ...

  9. Comparison function - Wikipedia

    en.wikipedia.org/wiki/Comparison_function

    Comparison functions are primarily used to obtain quantitative restatements of stability properties as Lyapunov stability, uniform asymptotic stability, etc. These restatements are often more useful than the qualitative definitions of stability properties given in ε - δ {\displaystyle \varepsilon {\text{-}}\delta } language.