Search results
Results from the WOW.Com Content Network
An aperiodic, reversible, and irreducible Markov Chain can then be obtained using Metropolis–Hastings algorithm. Persi Diaconis and Bernd Sturmfels showed that (1) a Markov basis can be defined algebraically as an Ising model [ 2 ] and (2) any generating set for the ideal I := ker ( ψ ∗ ϕ ) {\displaystyle I:=\ker({\psi }*{\phi ...
Since irreducible Markov chains with finite state spaces have a unique stationary distribution, the above construction is unambiguous for irreducible Markov chains. In ergodic theory , a measure-preserving dynamical system is called "ergodic" iff any measurable subset S {\displaystyle S} such that T − 1 ( S ) = S {\displaystyle T^{-1}(S)=S ...
The theorem has a natural interpretation in the theory of finite Markov chains (where it is the matrix-theoretic equivalent of the convergence of an irreducible finite Markov chain to its stationary distribution, formulated in terms of the transition matrix of the chain; see, for example, the article on the subshift of finite type).
Also, a Markov chain is irreducible if there is a non-zero probability of transitioning (even if in more than one step) from any state to any other state. In the theory of manifolds , an n -manifold is irreducible if any embedded ( n − 1)-sphere bounds an embedded n -ball.
In probability theory, the mixing time of a Markov chain is the time until the Markov chain is "close" to its steady state distribution.. More precisely, a fundamental result about Markov chains is that a finite state irreducible aperiodic chain has a unique stationary distribution π and, regardless of the initial state, the time-t distribution of the chain converges to π as t tends to infinity.
Consider this figure depicting a section of a Markov chain with states i, j, k and l and the corresponding transition probabilities. Here Kolmogorov's criterion implies that the product of probabilities when traversing through any closed loop must be equal, so the product around the loop i to j to l to k returning to i must be equal to the loop the other way round,
[1] [2] Such models are often described as M/G/1 type Markov chains because they can describe transitions in an M/G/1 queue. [3] [4] The method is a more complicated version of the matrix geometric method and is the classical solution method for M/G/1 chains. [5]
Markov-chains have been used as a forecasting methods for several topics, for example price trends, [8] wind power [9] and solar irradiance. [10] The Markov-chain forecasting models utilize a variety of different settings, from discretizing the time-series [ 9 ] to hidden Markov-models combined with wavelets [ 8 ] and the Markov-chain mixture ...