enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cyclic number - Wikipedia

    en.wikipedia.org/wiki/Cyclic_number

    For example, the case b = 10, p = 7 gives the cyclic number 142857, and the case b = 12, p = 5 gives the cyclic number 2497. Not all values of p will yield a cyclic number using this formula; for example, the case b = 10, p = 13 gives 076923076923, and the case b = 12, p = 19 gives 076B45076B45076B45. These failed cases will always contain a ...

  3. Cyclic number (group theory) - Wikipedia

    en.wikipedia.org/wiki/Cyclic_number_(group_theory)

    A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …

  4. Cyclic group - Wikipedia

    en.wikipedia.org/wiki/Cyclic_group

    A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n, φ(n)) = 1. [13] The sequence of cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd except 2. The cyclic numbers are:

  5. Cyclic (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Cyclic_(mathematics)

    Cyclic number, a number such that cyclic permutations of the digits are successive multiples of the number; Cyclic order, a ternary relation defining a way to arrange a set of objects in a circle; Cyclic permutation, a permutation with one nontrivial orbit; Cyclic polygon, a polygon which can be given a circumscribed circle

  6. Cyclic permutation - Wikipedia

    en.wikipedia.org/wiki/Cyclic_permutation

    In mathematics, and in particular in group theory, a cyclic permutation is a permutation consisting of a single cycle. [1] [2] In some cases, cyclic permutations are referred to as cycles; [3] if a cyclic permutation has k elements, it may be called a k-cycle. Some authors widen this definition to include permutations with fixed points in ...

  7. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    One proof is to note that φ(d) is also equal to the number of possible generators of the cyclic group C d ; specifically, if C d = g with g d = 1, then g k is a generator for every k coprime to d. Since every element of C n generates a cyclic subgroup, and each subgroup C d ⊆ C n is generated by precisely φ(d) elements of C n, the formula ...

  8. Cycles and fixed points - Wikipedia

    en.wikipedia.org/wiki/Cycles_and_fixed_points

    In mathematics, the cycles of a permutation π of a finite set S correspond bijectively to the orbits of the subgroup generated by π acting on S. These orbits are subsets of S that can be written as { c 1, ..., c n}, such that π (c i) = c i + 1 for i = 1, ..., n − 1, and π (c n) = c 1. The corresponding cycle of π is written as ( c 1 c 2...

  9. Cyclic algebra - Wikipedia

    en.wikipedia.org/wiki/Cyclic_algebra

    In algebra, a cyclic division algebra is one of the basic examples of a division algebra over a field and plays a key role in the theory of central simple algebras. Definition [ edit ]