Search results
Results from the WOW.Com Content Network
For example, the case b = 10, p = 7 gives the cyclic number 142857, and the case b = 12, p = 5 gives the cyclic number 2497. Not all values of p will yield a cyclic number using this formula; for example, the case b = 10, p = 13 gives 076923076923, and the case b = 12, p = 19 gives 076B45076B45076B45. These failed cases will always contain a ...
A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …
A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n, φ(n)) = 1. [13] The sequence of cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd except 2. The cyclic numbers are:
Cyclic number, a number such that cyclic permutations of the digits are successive multiples of the number; Cyclic order, a ternary relation defining a way to arrange a set of objects in a circle; Cyclic permutation, a permutation with one nontrivial orbit; Cyclic polygon, a polygon which can be given a circumscribed circle
In mathematics, and in particular in group theory, a cyclic permutation is a permutation consisting of a single cycle. [1] [2] In some cases, cyclic permutations are referred to as cycles; [3] if a cyclic permutation has k elements, it may be called a k-cycle. Some authors widen this definition to include permutations with fixed points in ...
One proof is to note that φ(d) is also equal to the number of possible generators of the cyclic group C d ; specifically, if C d = g with g d = 1, then g k is a generator for every k coprime to d. Since every element of C n generates a cyclic subgroup, and each subgroup C d ⊆ C n is generated by precisely φ(d) elements of C n, the formula ...
In mathematics, the cycles of a permutation π of a finite set S correspond bijectively to the orbits of the subgroup generated by π acting on S. These orbits are subsets of S that can be written as { c 1, ..., c n}, such that π (c i) = c i + 1 for i = 1, ..., n − 1, and π (c n) = c 1. The corresponding cycle of π is written as ( c 1 c 2...
In algebra, a cyclic division algebra is one of the basic examples of a division algebra over a field and plays a key role in the theory of central simple algebras. Definition [ edit ]