Search results
Results from the WOW.Com Content Network
Under some definitions, the value of the radius may depend on the atom's state and context. [1] Atomic radii vary in a predictable and explicable manner across the periodic table. For instance, the radii generally decrease rightward along each period (row) of the table, from the alkali metals to the noble gases; and increase down each group ...
The atomic radius of a chemical element is a measure of the size of its atom, usually the mean or typical distance from the center of the nucleus to the outermost isolated electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius.
The atomic radius is half of the distance between two nuclei of two atoms. The atomic radius is the distance from the atomic nucleus to the outermost electron orbital in an atom . In general, the atomic radius decreases as we move from left-to-right in a period , and it increases when we go down a group .
The noble gases have also been referred to as inert gases, but this label is deprecated as many noble gas compounds are now known. [6] Rare gases is another term that was used, [7] but this is also inaccurate because argon forms a fairly considerable part (0.94% by volume, 1.3% by mass) of the Earth's atmosphere due to decay of radioactive ...
The van der Waals radius, r w, of an atom is the radius of an imaginary hard sphere representing the distance of closest approach for another atom. It is named after Johannes Diderik van der Waals, winner of the 1910 Nobel Prize in Physics, as he was the first to recognise that atoms were not simply points and to demonstrate the physical consequences of their size through the van der Waals ...
Atomic radius of elements of the groups 2, 13 and 14, showing the "d-block contraction", especially for Ga and Ge. The d-block contraction (sometimes called scandide contraction [1]) is a term used in chemistry to describe the effect of having full d orbitals on the period 4 elements.
The radius is called collision cross section radius or kinetic radius, and the diameter is called collision cross section diameter or kinetic diameter of a molecule in a monomolecular gas. There are no simple general relation between the collision cross section and the hard core size of the (fairly spherical) molecule.
When the Bohr treatment is extended to hydrogenic atoms, the Bohr radius becomes = =, where is the principal quantum number, and Z is an integer for the atomic number. In the Bohr model , the angular momentum is given as m v e r = n ℏ {\displaystyle mv_{\text{e}}r=n\hbar } .