Search results
Results from the WOW.Com Content Network
Here, k e is a constant, q 1 and q 2 are the quantities of each charge, and the scalar r is the distance between the charges. The force is along the straight line joining the two charges. If the charges have the same sign, the electrostatic force between them makes them repel; if they have different signs, the force between them makes them attract.
Diagram illustrating the image method for Laplace's equation for a sphere of radius R. The green point is a charge q lying inside the sphere at a distance p from the origin, the red point is the image of that point, having charge −qR/p, lying outside the sphere at a distance of R 2 /p from the origin. The potential produced by the two charges ...
The quadrupole moment tensor Q is a rank-two tensor—3×3 matrix. There are several definitions, but it is normally stated in the traceless form (i.e. + + =).The quadrupole moment tensor has thus nine components, but because of transposition symmetry and zero-trace property, in this form only five of these are independent.
The electric potential arising from a point charge, Q, at a distance, r, from the location of Q is observed to be =, where ε 0 is the permittivity of vacuum [4], V E is known as the Coulomb potential.
When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.
Two point charges, one with charge +q and the other one with charge −q separated by a distance d, constitute an electric dipole (a simple case of an electric multipole). For this case, the electric dipole moment has a magnitude p = q d {\displaystyle p=qd} and is directed from the negative charge to the positive one.
The electric charge Q, third component of weak isospin T 3 (also called T z, I 3 or I z) and weak hypercharge Y W are related by = +, (or by the alternative convention Q = T 3 + Y W). The first convention, used in this article, is equivalent to the earlier Gell-Mann–Nishijima formula. It makes the hypercharge be twice the average charge of a ...
A point charge q in the electric field of another charge Q. The electrostatic potential energy, U E, of one point charge q at position r in the presence of a point charge Q, taking an infinite separation between the charges as the reference position, is: