Search results
Results from the WOW.Com Content Network
The insulin transduction pathway is a biochemical pathway by which insulin increases the uptake of glucose into fat and muscle cells and reduces the synthesis of glucose in the liver and hence is involved in maintaining glucose homeostasis. This pathway is also influenced by fed versus fasting states, stress levels, and a variety of other ...
Once insulin binds to the receptor, phosphorylation takes place and attaches to the beta-subunit, thus initiating the transduction process. A protein binds to the phosphorylated receptor protein, becoming phosphorylated as well.
The insulin signal transduction pathway begins when insulin binds to the insulin receptor proteins. Once the transduction pathway is completed, the GLUT-4 storage vesicles becomes one with the cellular membrane. As a result, the GLUT-4 protein channels become embedded into the membrane, allowing glucose to be transported into the cell.
The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase. [5] Metabolically, the insulin receptor plays a key role in the regulation of glucose homeostasis; a functional process that under degenerate conditions may result in a range of clinical manifestations including diabetes and cancer.
Transcription of insulin is regulated by the binding of various transcription factors to the ~400 base pairs before the insulin transcription start site, called the "insulin regulatory sequence". [1] This sequence is made up of several distinct regions with different biochemical properties, each of which serve as binding sites for distinct ...
The insulin signal transduction pathway begins when insulin binds to the insulin receptor proteins. Once the transduction pathway is completed, the GLUT-4 storage vesicles becomes one with the cellular membrane. As a result, the GLUT-4 protein channels become embedded into the membrane, allowing glucose to be transported into the cell.
English: Insulin undergoes extensive posttranslational modification along the production pathway. Production and secretion are largely independent; prepared insulin is stored awaiting secretion. Both C-peptide and mature insulin are biologically active. Cell components and proteins in this image are not to scale.
GLP-1 receptor agonists stimulate insulin secretion by simulating activation of the body's endogenous incretin system. [32] The incretin system acts as an insulin secretion amplifying pathway. [32] DPP-4 inhibitors block DPP-4 activity which increases postprandial incretin hormone concentration, therefore increasing insulin secretion. [32]