Search results
Results from the WOW.Com Content Network
Phenol: 181.75 3.60 43.0 –7.27 K f [2] K b [1] Water: 100.00 0.512 0.00 –1.86 K b & K f [2] Ethyl Acetate: 77.1 [5] Acetic Anhydride: 139.0 [6] Ethylene Dichloride: 1.25 83.5 −35 [7] Acetonitrile: 0.78 81.6 −45 [8] Heptane: 98.4 [9] Isobutanol: 107.7 [10] n-Hexane: 0.66 68.7 [11] n-Butanol: 117.7 [12] Hydrochloric Acid: 84.8 [13] tert ...
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Ethyl acetate (systematically ethyl ethanoate, commonly abbreviated EtOAc, ETAC or EA) is the organic compound with the formula CH 3 CO 2 CH 2 CH 3, simplified to C 4 H 8 O 2.This flammable, colorless liquid has a characteristic sweet smell (similar to pear drops) and is used in glues, nail polish removers, and the decaffeination process of tea and coffee.
Critical point: 530 K (260 °C), 3900 kPa Std enthalpy change ... for Ethyl Acetate/Acetic acid [3] P = 740 mmHg BP Temp. °C % by mole C 4 H 8 O 2; liquid vapor 117. ...
high boiling point dimethyl sulfoxide (CH 3) 2 SO 189 °C 46.7 1.1 g/cm 3: 3.96 reacts with strong bases, difficult to purify ethyl acetate: C 4 H 8 O 2: 77.11°C 6.02 0.902 g/cm 3: 1.88 reacts with strong bases hexamethylphosphoramide [(CH 3) 2 N] 3 PO 232.5 °C 29.6 1.03 g/cm 3: 5.38 high boiling point, high toxicity pyridine: C 5 H 5 N 115 ...
Triple point: 150 K (−123 °C), 0.00043 Pa Critical point: 514 K (241 °C), 63 bar Std enthalpy change of fusion, Δ fus H o +4.9 kJ/mol Std entropy change of fusion, Δ fus S o +31 J/(mol·K) Std enthalpy change of vaporization, Δ vap H o +42.3 ± 0.4 kJ/mol [4] Std entropy change of vaporization, Δ vap S o: 109.67 J/(mol·K) Molal ...
At large scale, ethyl acetoacetate is industrially produced by treatment of diketene with ethanol. [2] The small scale preparation of ethyl acetoacetate is a classic laboratory procedure. [3] It involves Claisen condensation of ethyl acetate. Two moles of ethyl acetate condense to form one mole each of ethyl acetoacetate and ethanol. [4]
Phenyl acetate is the ester of phenol and acetic acid.It can be produced by reacting phenol with acetic anhydride or acetyl chloride.. Phenyl acetate can be separated into phenol and an acetate salt, via saponification: heating the phenyl acetate with a strong base, such as sodium hydroxide, will produce phenol and an acetate salt (sodium acetate, if sodium hydroxide were used).