Ad
related to: reverse advanced glycation end productsabebooks.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Advanced glycation end products (AGEs) are proteins or lipids that become glycated as a result of exposure to sugars. [1] They are a bio-marker implicated in aging and the development, or worsening, of many degenerative diseases , such as diabetes , atherosclerosis , chronic kidney disease , and Alzheimer's disease .
Schematic of the relation between an immunoglobulin and RAGE Schematic of the RAGE gene and its products. RAGE (receptor for advanced glycation endproducts), also called AGER, is a 35 kilodalton transmembrane receptor [5] of the immunoglobulin super family which was first characterized in 1992 by Neeper et al. [6] Its name comes from its ability to bind advanced glycation endproducts (), which ...
The formation of imines is generally reversible, but subsequent to conversion to the keto-amine, the attached amine is fixed irreversibly. This Amadori product is an intermediate in the production of advanced glycation end-products (AGE)s. The formation of an advanced glycation end-product involves the oxidation of the Amadori product.
Glycation is the non-enzymatic process responsible for many (e.g. micro and macrovascular) complications in diabetes mellitus and is implicated in some diseases and in aging. [2] [3] [4] Glycation end products are believed to play a causative role in the vascular complications of diabetes mellitus. [5]
Glucosepane is a lysine-arginine protein cross-linking product and advanced glycation end product (AGE) derived from D-glucose. [1] It is an irreversible, covalent cross-link product that has been found to make intermolecular and intramolecular cross-links in the collagen of the extracellular matrix (ECM) and crystallin of the eyes. [2]
Pages in category "Advanced glycation end-products" The following 8 pages are in this category, out of 8 total. This list may not reflect recent changes. A.
This compound is a reactive aldehyde and is one of the many reactive electrophile species that cause toxic stress in cells and form covalent protein adducts referred to as "advanced lipoxidation end-products" (ALE), in analogy to advanced glycation end-products (AGE). [6]
N(6)-Carboxymethyllysine (CML), also known as N ε-(carboxymethyl)lysine, is an advanced glycation endproduct (AGE). CML has been the most used marker for AGEs in food analysis. CML has been the most used marker for AGEs in food analysis.
Ad
related to: reverse advanced glycation end productsabebooks.com has been visited by 10K+ users in the past month