enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Antibonding molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Antibonding_molecular_orbital

    In a molecule such as H 2, the two electrons normally occupy the lower-energy bonding orbital, so that the molecule is more stable than the separate H atoms. He 2 electron configuration. The four electrons occupy one bonding orbital at lower energy, and one antibonding orbital at higher energy than the atomic orbitals.

  3. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    The bond order is equal to the number of bonding electrons minus the number of antibonding electrons, divided by 2. In this example, there are 2 electrons in the bonding orbital and none in the antibonding orbital; the bond order is 1, and there is a single bond between the two hydrogen atoms. [citation needed]

  4. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    Distributing 8 electrons over 6 molecular orbitals leaves the final two electrons as a degenerate pair in the 2pπ* antibonding orbitals resulting in a bond order of 2. As in diboron, these two unpaired electrons have the same spin in the ground state, which is a paramagnetic diradical triplet oxygen.

  5. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    However, in benzene the remaining six bonding electrons are located in three π (pi) molecular bonding orbitals that are delocalized around the ring. Two of these electrons are in an MO that has equal orbital contributions from all six atoms. The other four electrons are in orbitals with vertical nodes at right angles to each other.

  6. Bond order - Wikipedia

    en.wikipedia.org/wiki/Bond_order

    In chemistry, bond order is a formal measure of the multiplicity of a covalent bond between two atoms. As introduced by Gerhard Herzberg, [1] building off of work by R. S. Mulliken and Friedrich Hund, bond order is defined as the difference between the numbers of electron pairs in bonding and antibonding molecular orbitals.

  7. Localized molecular orbitals - Wikipedia

    en.wikipedia.org/wiki/Localized_molecular_orbitals

    For molecules with an open electron shell, in which some molecular orbitals are singly occupied, the electrons of alpha and beta spin must be localized separately. [2] [3] This applies to radical species such as nitric oxide and dioxygen. Again, in this case the localized and delocalized orbital descriptions are equivalent and represent the ...

  8. Ligand field theory - Wikipedia

    en.wikipedia.org/wiki/Ligand_field_theory

    They combine with the d xy, d xz and d yz orbitals on the metal and donate electrons to the resulting π-symmetry bonding orbital between them and the metal. The metal-ligand bond is somewhat strengthened by this interaction, but the complementary anti-bonding molecular orbital from ligand-to-metal bonding is not higher in energy than the anti ...

  9. Bonding molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Bonding_molecular_orbital

    When the two atomic orbitals come together, they first fill in the bonding orbital with two electrons, but unlike hydrogen, it has two electrons left, which must then go to the antibonding orbital. The instability of the antibonding orbital cancels out the stabilizing effect provided by the bonding orbital; therefore, dihelium's bond order is 0 ...