Search results
Results from the WOW.Com Content Network
Additive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics: Additive because it is added to any noise that might be intrinsic to the information system.
This model is called a Gaussian white noise signal (or process). In the mathematical field known as white noise analysis, a Gaussian white noise is defined as a stochastic tempered distribution, i.e. a random variable with values in the space ′ of tempered distributions.
A special case is white Gaussian noise, in which the values at any pair of times are identically distributed and statistically independent (and hence uncorrelated). In communication channel testing and modelling, Gaussian noise is used as additive white noise to generate additive white Gaussian noise.
In probability theory, a branch of mathematics, white noise analysis, otherwise known as Hida calculus, is a framework for infinite-dimensional and stochastic calculus, based on the Gaussian white noise probability space, to be compared with Malliavin calculus based on the Wiener process. [1]
White noise. Additive white Gaussian noise; Black noise; Gaussian noise; Pink noise or flicker noise, with 1/f power spectrum; Brownian noise, with 1/f 2 power spectrum; Contaminated Gaussian noise, whose PDF is a linear mixture of Gaussian PDFs; Power-law noise; Cauchy noise; Multiplicative noise, multiplies or modulates the intended signal
In applied mathematics, the Wiener process is used to represent the integral of a white noise Gaussian process, and so is useful as a model of noise in electronics engineering (see Brownian noise), instrument errors in filtering theory and disturbances in control theory. The Wiener process has applications throughout the mathematical sciences.
AR noise or "autoregressive noise" is such a model, and generates simple examples of the above noise types, and more. The Federal Standard 1037C Telecommunications Glossary [ 1 ] [ 2 ] defines white, pink, blue, and black noise.
White noise is the simplest example of a stationary process. An example of a discrete-time stationary process where the sample space is also discrete (so that the random variable may take one of N possible values) is a Bernoulli scheme .