Search results
Results from the WOW.Com Content Network
The linked frequency of crossing over between two gene loci is the crossing-over value. For fixed set of genetic and environmental conditions, recombination in a particular region of a linkage structure ( chromosome ) tends to be constant and the same is then true for the crossing-over value which is used in the production of genetic maps .
Most recombination occurs naturally and can be classified into two types: (1) interchromosomal recombination, occurring through independent assortment of alleles whose loci are on different but homologous chromosomes (random orientation of pairs of homologous chromosomes in meiosis I); & (2) intrachromosomal recombination, occurring through ...
The physical basis of the independent assortment of chromosomes is the random orientation of each bivalent chromosome along the metaphase plate with respect to the other bivalent chromosomes. Along with crossing over, independent assortment increases genetic diversity by producing novel genetic combinations.
Crossover in evolutionary algorithms and evolutionary computation, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring.
This is an accepted version of this page This is the latest accepted revision, reviewed on 5 January 2025. Cell division producing haploid gametes For the figure of speech, see Meiosis (figure of speech). For the process whereby cell nuclei divide to produce two copies of themselves, see Mitosis. For excessive constriction of the pupils, see Miosis. For the parasitic infestation, see Myiasis ...
There is controversy over whether homologous recombination occurs in negative-sense ssRNA viruses like influenza. [89] In RNA viruses, homologous recombination can be either precise or imprecise. In the precise type of RNA-RNA recombination, there is no difference between the two parental RNA sequences and the resulting crossover RNA region.
Points of crossing over become visible as chiasma after the synaptonemal complex dissembles and the homologous chromosomes slightly apart from each other. The phenomenon of genetic chiasmata (chiasmatypie) was discovered and described in 1909 by Frans Alfons Janssens, a Professor at the University of Leuven in Belgium. [3] [4]
Additional crossing over mapping located the Dsbc1 locus to the 12.2 to 16.7-Mb region of mouse chromosome 17, which contains the PRDM9 gene. The PRDM9 gene encodes a histone methyltransferase in the Dsbc1 region, providing evidence of a non-random, genetic basis for recombination initiation sites in mice. [3]