Search results
Results from the WOW.Com Content Network
First, metabolites that are produced by active muscle use can alter skeletal muscle tone. Second, skeletal muscle can undergo hyperemia, which is a mechanism of local blood flow regulation with two major subtypes. Regardless of the subtype, the result of hyperemia is an increase in blood flow to the affected skeletal muscle. [4]
The V/Q ratio can therefore be defined as the ratio of the amount of air reaching the alveoli per minute to the amount of blood reaching the alveoli per minute—a ratio of volumetric flow rates. These two variables, V and Q, constitute the main determinants of the blood oxygen (O 2 ) and carbon dioxide (CO 2 ) concentration.
This is the numerator in the equation. The denominator is the total amount of sodium filtered by the kidneys. This is calculated by multiplying the plasma sodium concentration by the glomerular filtration rate (GFR) calculated using creatinine filtration. The flow rates then cancel out, simplifying to the standard equation: [1]
The above formula only applies for GFR calculation when it is equal to the clearance rate. The normal range of GFR, adjusted for body surface area , is 100–130 average 125 (mL/min)/(1.73 m 2 ) in men and 90–120 (mL/min)/(1.73 m 2 ) in women younger than the age of 40.
Renal plasma flow is the volume of plasma that reaches the kidneys per unit time. Renal plasma flow is given by the Fick principle: = This is essentially a conservation of mass equation which balances the renal inputs (the renal artery) and the renal outputs (the renal vein and ureter). Put simply, a non-metabolizable solute entering the kidney ...
The CKD-EPI equation performed better than the MDRD (Modification of Diet in Renal Disease Study) equation, especially at higher GFR, with less bias and greater accuracy. When looking at NHANES (National Health and Nutrition Examination Survey) data, the median estimated GFR was 94.5 mL/min per 1.73 m 2 vs. 85.0 mL/min per 1.73 m 2 , and the ...
Moreover, impaired blood flow resulting from abnormal vasoconstriction may contribute to tissue ischemia, which can be observed in conditions like Raynaud's disease. Understanding the pathology of vasoconstriction is crucial for developing targeted therapeutic strategies to manage conditions associated with abnormal vascular tone.
Myogenic mechanisms in the kidney are part of the autoregulation mechanism which maintains a constant renal blood flow at varying arterial pressure. Concomitant autoregulation of glomerular pressure and filtration indicates regulation of preglomerular resistance.