enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Suzuki reaction - Wikipedia

    en.wikipedia.org/wiki/Suzuki_reaction

    The Suzuki reaction or Suzuki coupling is an organic reaction that uses a palladium complex catalyst to cross-couple a boronic acid to an organohalide. [1] [2] [3] It was first published in 1979 by Akira Suzuki, and he shared the 2010 Nobel Prize in Chemistry with Richard F. Heck and Ei-ichi Negishi for their contribution to the discovery and development of noble metal catalysis in organic ...

  3. Transition metal pincer complex - Wikipedia

    en.wikipedia.org/wiki/Transition_metal_pincer...

    The general mechanism for the Suzuki reaction. Pincer complexes have been shown to catalyse Suzuki-Miyaura coupling reactions, a versatile carbon-carbon bond forming reaction. Typical Suzuki coupling employ Pd(0) catalysts with monodentate tertiary phosphine ligands (e.g. Pd(PPh 3) 4). It is a very selective method to couple aryl substituents ...

  4. Protodeboronation - Wikipedia

    en.wikipedia.org/wiki/Protodeboronation

    Protodeboronation is a well-known undesired side reaction, and frequently associated with metal-catalysed coupling reactions that utilise boronic acids (see Suzuki reaction). [1] For a given boronic acid, the propensity to undergo protodeboronation is highly variable and dependent on various factors, such as the reaction conditions employed and ...

  5. Akira Suzuki - Wikipedia

    en.wikipedia.org/wiki/Akira_Suzuki

    From 1963 until 1965, Suzuki worked as a postdoctoral student with Herbert C. Brown at Purdue University and after returning to the Hokudai he became a full professor there. The postdoctoral experience was utilized in the study of the coupling reaction with his assistant Norio Miyaura and led to the discovery of Suzuki reaction announced in ...

  6. Borylation - Wikipedia

    en.wikipedia.org/wiki/Borylation

    Then A. Suzuki and co-workers extend this kind of reaction to other organoboron compounds and other alkenyl, aryl, alkyl halides and triflate. The palladium-catalyzed cross-coupling reaction organoboron compounds and these organic halides to form carbon-carbon bonds are known as Suzuki–Miyaura cross-coupling. [41] [42] Suzuki-Miyaura Cross ...

  7. Norio Miyaura - Wikipedia

    en.wikipedia.org/wiki/Norio_Miyaura

    Norio Miyaura (宮浦憲夫, Miyaura Norio) was a Japanese organic chemist. He was a professor of graduate chemical engineering at Hokkaido University. [1] His major accomplishments surrounded his work in cross-coupling reactions / conjugate addition reactions of organoboronic acids (for C-C bond-forming reactions) and addition / coupling reactions of diborons and boranes (to synthesize ...

  8. Palladium–NHC complex - Wikipedia

    en.wikipedia.org/wiki/Palladium–NHC_complex

    The utility of palladium-catalyzed cross-coupling reactions is enhanced by the use of N-heterocyclic carbene ligands. Indeed, Pd-NHC complexes have been proven effective in Suzuki-Miyaura, Negishi, Sonogashira, Kumada-Tamao-Corriu, Hiyama, and Stille cross-coupling. Compared to the corresponding Pd-phosphine catalysts, Pd-NHC catalysts can be ...

  9. Organotrifluoroborate - Wikipedia

    en.wikipedia.org/wiki/Organotrifluoroborate

    The mechanism of organotrifluoroborate-based Suzuki-Miyaura coupling reactions has recently been investigated in detail. The organotrifluoroborate hydrolyses to the corresponding boronic acid in situ, so a boronic acid can be used in place of an organotrifluoroborate, as long as it is added slowly and carefully. [7] [8]