Search results
Results from the WOW.Com Content Network
Adsorption is present in many natural, physical, biological and chemical systems and is widely used in industrial applications such as heterogeneous catalysts, [9] [10] activated charcoal, capturing and using waste heat to provide cold water for air conditioning and other process requirements (adsorption chillers), synthetic resins, increasing ...
Absorption is a physical or chemical phenomenon or a process in which atoms, molecules or ions enter the liquid or solid bulk phase of a material. This is a different process from adsorption, since molecules undergoing absorption are taken up by the volume, not by the surface (as in the case for adsorption).
Gas–liquid absorption (a) and liquid–solid adsorption (b) mechanism. Blue spheres are solute molecules. Sorption is a physical and chemical process by which one substance becomes attached to another. Specific cases of sorption are treated in the following articles: Absorption
In physisorption, perturbation of the electronic states of adsorbent and adsorbate is minimal. The adsorption forces include London Forces, dipole-dipole attractions, dipole-induced attraction and "hydrogen bonding." For chemisorption, changes in the electronic states may be detectable by suitable physical means, in other words, chemical bonding.
Chemisorption is a kind of adsorption which involves a chemical reaction between the surface and the adsorbate. New chemical bonds are generated at the adsorbent surface. Examples include macroscopic phenomena that can be very obvious, like corrosion [clarification needed], and subtler effects associated with heterogeneous catalysis, where the catalyst and reactants are in different pha
This relationship between water activity and moisture content at a given temperature is called the moisture sorption isotherm. These curves are determined experimentally and constitute the fingerprint of a food system. [2] BET theory (Brunauer-Emmett-Teller) provides a calculation to describe the physical adsorption of gas molecules on a solid ...
The square is because a disassociation of 1 molecule into 2 parts requires 2 adsorption sites. These equations are simple and can be easily understood but cannot explain experimental results. In 1958, P. Kisliuk [ 1 ] presented an equation for the sticking probability that can explain experimental results.
Liquid water and ice emit radiation at a higher rate than water vapour (see graph above). Water at the top of the troposphere, particularly in liquid and solid states, cools as it emits net photons to space. Neighboring gas molecules other than water (e.g. nitrogen) are cooled by passing their heat kinetically to the water.