enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    k 1 = c · (a + b) k 2 = a · (d − c) k 3 = b · (c + d) Real part = k 1 − k 3 Imaginary part = k 1 + k 2. This algorithm uses only three multiplications, rather than four, and five additions or subtractions rather than two. If a multiply is more expensive than three adds or subtracts, as when calculating by hand, then there is a gain in speed.

  3. Booth's multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Booth's_multiplication...

    Booth's multiplication algorithm is a multiplication algorithm that multiplies two signed binary numbers in two's complement notation. The algorithm was invented by Andrew Donald Booth in 1950 while doing research on crystallography at Birkbeck College in Bloomsbury, London. [1] Booth's algorithm is of interest in the study of computer ...

  4. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The standard procedure for multiplication of two n-digit numbers requires a number of elementary operations proportional to , or () in big-O notation. Andrey Kolmogorov conjectured that the traditional algorithm was asymptotically optimal , meaning that any algorithm for that task would require Ω ( n 2 ) {\displaystyle \Omega (n^{2 ...

  5. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...

  6. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    This section has a simplified version of the algorithm, showing how to compute the product of two natural numbers ,, modulo a number of the form +, where = is some fixed number. The integers a , b {\displaystyle a,b} are to be divided into D = 2 k {\displaystyle D=2^{k}} blocks of M {\displaystyle M} bits, so in practical implementations, it is ...

  7. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    For multiplication, the most straightforward algorithms used for multiplying numbers by hand (as taught in primary school) require (N 2) operations, but multiplication algorithms that achieve O(N log(N) log(log(N))) complexity have been devised, such as the Schönhage–Strassen algorithm, based on fast Fourier transforms, and there are also ...

  8. Arithmetic shift - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_shift

    Arithmetic left shifts are equivalent to multiplication by a (positive, integral) power of the radix (e.g., a multiplication by a power of 2 for binary numbers). Logical left shifts are also equivalent, except multiplication and arithmetic shifts may trigger arithmetic overflow whereas logical shifts do not [citation needed].

  9. List of Java bytecode instructions - Wikipedia

    en.wikipedia.org/wiki/List_of_Java_bytecode...

    compare two doubles, 1 on NaN dcmpl 97 1001 0111 value1, value2 → result compare two doubles, -1 on NaN dconst_0 0e 0000 1110 → 0.0 push the constant 0.0 (a double) onto the stack dconst_1 0f 0000 1111 → 1.0 push the constant 1.0 (a double) onto the stack ddiv 6f 0110 1111 value1, value2 → result divide two doubles dload 18 0001 1000