Search results
Results from the WOW.Com Content Network
An enhancer localized in a DNA region distant from the promoter of a gene can have a very large effect on gene transcription, with some genes undergoing up to 100-fold increased transcription due to an activated enhancer. [10] Enhancers are regions of the genome that are major gene-regulatory elements.
Transcription factors can be divided in two main categories: activators and repressors. While activators can interact directly or indirectly with the core machinery of transcription through enhancer binding, repressors predominantly recruit co-repressor complexes leading to transcriptional repression by chromatin condensation of enhancer regions.
In genetics, an enhancer is a short (50–1500 bp) region of DNA that can be bound by proteins to increase the likelihood that transcription of a particular gene will occur. [1] [2] These proteins are usually referred to as transcription factors. Enhancers are cis-acting. They can be located up to 1 Mbp (1,000,000 bp) away from the gene ...
The active enhancer is transcribed on each strand of DNA in opposite directions by bound RNAP IIs. Mediator (a complex consisting of about 26 proteins in an interacting structure) communicates regulatory signals from the enhancer DNA-bound transcription factors to the promoter. NELF, in complex with DSIF and RNAP II, can pause transcription.
Several cell function specific transcription factors (there are about 1,600 transcription factors in a human cell [31]) generally bind to specific motifs on an enhancer [32] and a small combination of these enhancer-bound transcription factors, when brought close to a promoter by a DNA loop, govern the level of transcription of the target gene.
Enhancers are bound by transcription activator proteins and transcriptional regulation is typically controlled by more than one activator. Enhanceosomes are formed in special cases when these activators cooperatively bind together along the enhancer sequence to create a distinct three-dimensional structure.
To initiate the transcription process in a cell's nucleus, DNA double helices are unwound and hydrogen bonds connecting compatible nucleic acids of DNA are broken to produce two unconnected single DNA strands. [1] One strand of the DNA template is used for transcription of the single-stranded primary transcript mRNA.
Promoter activity of the P-RM and P-R promoters vs RNA polymerase concentration in the enterobacteriophage lambda [1]. Promoter activity is a term that encompasses several meanings around the process of gene expression from regulatory sequences —promoters [2] and enhancers. [3]