Search results
Results from the WOW.Com Content Network
Ammonia solutions decrease in density as the concentration of dissolved ammonia increases. At 15.6 °C (60.1 °F), the density of a saturated solution is 0.88 g/ml; it contains 35.6% ammonia by mass, 308 grams of ammonia per litre of solution, and has a molarity of approximately 18 mol /L.
The table above gives properties of the vapor–liquid equilibrium of anhydrous ammonia at various temperatures. The second column is vapor pressure in kPa. The third column is the density of the liquid phase. The fourth column is the density of the vapor.
The hazards of ammonia solutions depend on the concentration: 'dilute' ammonia solutions are usually 5–10% by weight (< 5.62 mol/L); 'concentrated' solutions are usually prepared at >25% by weight. A 25% (by weight) solution has a density of 0.907 g/cm 3, and a solution that has a lower density will be more concentrated.
C = Concentration of oxidizable compound in the sample, FW = Formula weight of the oxidizable compound in the sample, RMO = Ratio of the # of moles of oxygen to # of moles of oxidizable compound in their reaction to CO 2, water, and ammonia. For example, if a sample has 500 Wppm (Weight Parts per Million) of phenol: C 6 H 5 OH + 7O 2 → 6CO 2 ...
Typically, the ammonium sulfate concentration is increased stepwise, and the precipitated protein is recovered at each stage. This is usually done by adding solid ammonium sulfate; however, calculating the amount of ammonium sulfate that should be added to add to a solution to achieve the desired concentration may be difficult because the addition of ammonium sulfate significantly increases ...
Diffusivity, mass diffusivity or diffusion coefficient is usually written as the proportionality constant between the molar flux due to molecular diffusion and the negative value of the gradient in the concentration of the species. More accurately, the diffusion coefficient times the local concentration is the proportionality constant between ...
NaOH reacts the ammonium (NH 4 +) to ammonia (NH 3), which boils off the sample solution. Ammonia bubbles through the standard acid solution and reacts back to ammonium salts with the weak or strong acid. [3] Ammonium ion concentration in the acid solution, and thus the amount of nitrogen in the sample, is measured via titration.
Theoretical oxygen demand (ThOD) is the calculated amount of oxygen required to oxidize a compound to its final oxidation products. [1] However, there are some differences between standard methods that can influence the results obtained: for example, some calculations assume that nitrogen released from organic compounds is generated as ammonia, whereas others allow for ammonia oxidation to ...