Search results
Results from the WOW.Com Content Network
The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
In fluid dynamics, the CV, also referred to as Percent RMS, %RMS, %RMS Uniformity, or Velocity RMS, is a useful determination of flow uniformity for industrial processes. The term is used widely in the design of pollution control equipment, such as electrostatic precipitators (ESPs), [ 15 ] selective catalytic reduction (SCR), scrubbers, and ...
For Reynolds number greater than 4000, the flow is turbulent; the resistance to flow follows the Darcy–Weisbach equation: it is proportional to the square of the mean flow velocity. Over a domain of many orders of magnitude of Re ( 4000 < Re < 10 8 ), the friction factor varies less than one order of magnitude ( 0.006 < f D < 0.06 ).
In hypersonic flow, the pressure coefficient can be accurately calculated for a vehicle using Newton's corpuscular theory of fluid motion, which is inaccurate for low-speed flow and relies on three assumptions: [5] The flow can be modeled as a stream of particles in rectilinear motion; Upon impact with a surface, all normal momentum is lost
In continuum mechanics and thermodynamics, a control volume (CV) is a mathematical abstraction employed in the process of creating mathematical models of physical processes. In an inertial frame of reference , it is a fictitious region of a given volume fixed in space or moving with constant flow velocity through which the continuuum (a ...
Take a look at every state ranked by how much each parent is going to spend on each kid this holiday season.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.