Search results
Results from the WOW.Com Content Network
A counting problem asks for the number of solutions to a given search problem. For example, a counting problem associated with factoring is "Given a positive integer n, count the number of nontrivial prime factors of n." A counting problem can be represented by a function f from {0, 1} * to the nonnegative integers.
The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for
This approach to the factorial takes total time (): one logarithm comes from the number of bits in the factorial, a second comes from the multiplication algorithm, and a third comes from the divide and conquer. [88]
In number theory, the Kempner function [1] is defined for a given positive integer to be the smallest number such that divides the factorial!. For example, the number 8 {\displaystyle 8} does not divide 1 ! {\displaystyle 1!} , 2 ! {\displaystyle 2!} , or 3 ! {\displaystyle 3!} , but does divide 4 ! {\displaystyle 4!} , so S ( 8 ) = 4 ...
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
The problem has been shown to be NP-hard (more precisely, it is complete for the complexity class FP NP; see function problem), and the decision problem version ("given the costs and a number x, decide whether there is a round-trip route cheaper than x") is NP-complete. The bottleneck travelling salesman problem is also NP-hard.
In number theory, a factorion in a given number base is a natural number that equals the sum of the factorials of its digits. [ 1 ] [ 2 ] [ 3 ] The name factorion was coined by the author Clifford A. Pickover .
Dim counter As Integer = 5 ' init variable and set value Dim factorial As Integer = 1 ' initialize factorial variable Do While counter > 0 factorial = factorial * counter counter = counter-1 Loop ' program goes here, until counter = 0 'Debug.Print factorial ' Console.WriteLine(factorial) in Visual Basic .NET