Search results
Results from the WOW.Com Content Network
Plants cool when they transpire. Evaporating water and transmitting it through leaf stomata requires a lot of energy. Fred Pearce states that “a single tree transpiring a hundred litres of water a day has a cooling power equivalent to two household air-conditioning units” [7] (p. 29). An individual tree can transpire hundreds of litres of ...
Transpirational cooling is the cooling provided as plants transpire water. Excess heat generated from solar radiation is damaging to plant cells and thermal injury occurs during drought or when there is rapid transpiration which produces wilting. [19]
A cooling curve of naphthalene from liquid to solid. A cooling curve is a line graph that represents the change of phase of matter, typically from a gas to a solid or a liquid to a solid. The independent variable (X-axis) is time and the dependent variable (Y-axis) is temperature. [1] Below is an example of a cooling curve used in castings.
The pressure on a pressure-temperature diagram (such as the water phase diagram shown above) is the partial pressure of the substance in question. A phase diagram in physical chemistry , engineering , mineralogy , and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct ...
The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.
3- Water moves from the xylem into the mesophyll cells, evaporates from their surfaces and leaves the plant by diffusion through the stomata. In plants, the transpiration stream is the uninterrupted stream of water and solutes which is taken up by the roots and transported via the xylem to the leaves where it evaporates into the air/ apoplast ...
If water is cooled at a rate on the order of 10 6 K/s, the crystal nucleation can be avoided and water becomes a glass—that is, an amorphous (non-crystalline) solid. Its glass transition temperature is much colder and harder to determine, but studies estimate it at about 136 K (−137 °C; −215 °F). [ 9 ]
T–s diagram of a typical Rankine cycle operating between pressures of 0.06 bar and 50 bar. Left from the bell-shaped curve is liquid, right from it is gas, and under it is saturated liquid–vapour equilibrium. There are four processes in the Rankine cycle. The states are identified by numbers (in brown) in the T–s diagram.