enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Interval (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Interval_(mathematics)

    This characterization is used to specify intervals by mean of interval notation, which is described below. An open interval does not include any endpoint, and is indicated with parentheses. [2] For example, (,) = {< <} is the interval of all real numbers greater than 0 and less than 1.

  3. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < ⁠ 1 / 2 ⁠ and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < ⁠ 1 / 2 ⁠.

  4. Inequation - Wikipedia

    en.wikipedia.org/wiki/Inequation

    In mathematics, an inequation is a statement that an inequality holds between two values. [1] [2] It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation. Some examples of inequations are:

  5. Interval arithmetic - Wikipedia

    en.wikipedia.org/wiki/Interval_arithmetic

    The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.

  6. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    Given real numbers x and y, integers m and n and the set of integers, floor and ceiling may be defined by the equations ⌊ ⌋ = {}, ⌈ ⌉ = {}. Since there is exactly one integer in a half-open interval of length one, for any real number x, there are unique integers m and n satisfying the equation

  7. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    This inequality, known as the Cauchy–Schwarz inequality, plays a prominent role in Hilbert space theory, where the left hand side is interpreted as the inner product of two square-integrable functions f and g on the interval [a, b].

  8. Variational inequality - Wikipedia

    en.wikipedia.org/wiki/Variational_inequality

    Following Antman (1983, p. 283), the definition of a variational inequality is the following one.. Given a Banach space, a subset of , and a functional : from to the dual space of the space , the variational inequality problem is the problem of solving for the variable belonging to the following inequality:

  9. Minkowski inequality - Wikipedia

    en.wikipedia.org/wiki/Minkowski_inequality

    The reverse inequality follows from the same argument as the standard Minkowski, but uses that Holder's inequality is also reversed in this range. Using the Reverse Minkowski, we may prove that power means with p ≤ 1 , {\textstyle p\leq 1,} such as the harmonic mean and the geometric mean are concave.