Search results
Results from the WOW.Com Content Network
Copper(II) chloride is used as a catalyst in a variety of processes that produce chlorine by oxychlorination. The Deacon process takes place at about 400 to 450 °C in the presence of a copper chloride: [8] 4 HCl + O 2 → 2 Cl 2 + 2 H 2 O. Copper(II) chloride catalyzes the chlorination in the production of vinyl chloride and dichloromethane. [8]
Copper is a chemical element with the symbol Cu (from Latin: cuprum) and the atomic number of 29. It is easily recognisable, due to its distinct red-orange color . Copper also has a range of different organic and inorganic salts , having varying oxidation states ranging from (0,I) to (III).
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Many other oxyanions form complexes; these include copper(II) acetate, copper(II) nitrate, and copper(II) carbonate. Copper(II) sulfate forms a blue crystalline pentahydrate, the most familiar copper compound in the laboratory. It is used in a fungicide called the Bordeaux mixture. [67] Ball-and-stick model of the complex [Cu(NH 3) 4 (H 2 O) 2 ...
Copper(I) chloride is produced industrially by the direct combination of copper metal and chlorine at 450–900 °C: [11] [12] 2 Cu + Cl 2 → 2 CuCl. Copper(I) chloride can also be prepared by reducing copper(II) chloride with sulfur dioxide, or with ascorbic acid that acts as a reducing sugar: [13] [14]
Basic copper carbonate precipitates from the solution, with release of carbon dioxide CO 2: [7] 2CuSO 4 + 2Na 2 CO 3 + H 2 O → Cu 2 (OH) 2 CO 3 + 2Na 2 SO 4 + CO 2. Basic copper carbonate can also be prepared by treating aqueous solutions of copper(II) sulfate with sodium bicarbonate. Copper(II) sulfate may also be substituted with Copper(II ...
Freezer Storage Tips. Since it extends the life of perishable items by weeks to months, “freezer storage is an amazing way to reduce food waste,” explains Gangeri.
It can be formed by heating copper in air at around 300–800 °C: 2 Cu + O 2 → 2 CuO. For laboratory uses, copper(II) oxide is conveniently prepared by pyrolysis of copper(II) nitrate or basic copper(II) carbonate: [4] 2 Cu(NO 3) 2 → 2 CuO + 4 NO 2 + O 2 (180°C) Cu 2 (OH) 2 CO 3 → 2 CuO + CO 2 + H 2 O. Dehydration of cupric hydroxide ...