Search results
Results from the WOW.Com Content Network
0.17308 g/cm 3 (from 23.1256 cm 3 /mole; at local min. density, from hcp melt at 0.699 K, 24.993 atm) 0.17443 g/cm 3 (from 22.947 cm 3 /mole; He-II at triple point hcp−bcc−He-II: 1.463 K, 26.036 atm) 0.1807 g/cm 3 (from 22.150 cm 3 /mole; He-I at triple point hcp−bcc−He-I: 1.772 K, 30.016 atm) 3 Li lithium; use: 0.512 g/cm 3: CR2 (at m ...
Help; Learn to edit; Community portal; Recent changes; Upload file; Special pages
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
Atomic Spectroscopy, by W.C. Martin and W.L. Wiese in Atomic, Molecular, & Optical Physics Handbook, ed. by G.W.F. Drake (AIP, Woodbury, NY, 1996) Chapter 10, pp. 135–153. This website is also cited in the CRC Handbook as source of Section 1, subsection Electron Configuration of Neutral Atoms in the Ground State. 91 Pa : [Rn] 5f 2 (3 H 4) 6d 7s 2
List of orders of magnitude for molar concentration; Factor (Molarity) SI prefix Value Item 10 −24: yM 1.66 yM: 1 elementary entity per litre [1]: 8.5 yM: airborne bacteria in the upper troposphere (5100/m 3) [2]
For each atom, the column marked 1 is the first ionization energy to ionize the neutral atom, the column marked 2 is the second ionization energy to remove a second electron from the +1 ion, the column marked 3 is the third ionization energy to remove a third electron from the +2 ion, and so on.
Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds