enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lloyd's algorithm - Wikipedia

    en.wikipedia.org/wiki/Lloyd's_algorithm

    Lloyd's algorithm is usually used in a Euclidean space. The Euclidean distance plays two roles in the algorithm: it is used to define the Voronoi cells, but it also corresponds to the choice of the centroid as the representative point of each cell, since the centroid is the point that minimizes the average squared Euclidean distance to the ...

  3. Euclidean distance matrix - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance_matrix

    In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} in k -dimensional space ℝ k , the elements of their Euclidean distance matrix A are given by squares of distances between them.

  4. String metric - Wikipedia

    en.wikipedia.org/wiki/String_metric

    A string metric provides a number indicating an algorithm-specific indication of distance. The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [2] It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order ...

  5. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    The Euclidean distance is the prototypical example of the distance in a metric space, [10] and obeys all the defining properties of a metric space: [11] It is symmetric, meaning that for all points and , (,) = (,). That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is ...

  6. Multidimensional scaling - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_scaling

    In classical MDS, this norm is the Euclidean distance, but, in a broader sense, it may be a metric or arbitrary distance function. [6] For example, when dealing with mixed-type data that contain numerical as well as categorical descriptors, Gower's distance is a common alternative. [citation needed]

  7. Statistical distance - Wikipedia

    en.wikipedia.org/wiki/Statistical_distance

    A metric on a set X is a function (called the distance function or simply distance) d : X × X → R + (where R + is the set of non-negative real numbers). For all x, y, z in X, this function is required to satisfy the following conditions: d(x, y) ≥ 0 (non-negativity) d(x, y) = 0 if and only if x = y (identity of indiscernibles.

  8. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy has been initially developed as a backend of Chainer deep learning framework, and later established as an independent project in 2017. [ 6 ] CuPy is a part of the NumPy ecosystem array libraries [ 7 ] and is widely adopted to utilize GPU with Python, [ 8 ] especially in high-performance computing environments such as Summit , [ 9 ...

  9. Distance matrix - Wikipedia

    en.wikipedia.org/wiki/Distance_matrix

    In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]