Search results
Results from the WOW.Com Content Network
Upsweep is an unidentified sound detected on the American NOAA's equatorial autonomous hydrophone arrays. This sound was present when the Pacific Marine Environmental Laboratory began recording its sound surveillance system, SOSUS, in August 1991. It consists of a long train of narrow-band upsweeping sounds of several seconds in duration each.
The sound's source was roughly triangulated to , a remote point in the South Pacific Ocean west of the southern tip of South AmericaThe sound was detected by the Equatorial Pacific Ocean autonomous hydrophone array, [1] a system of hydrophones primarily used to monitor undersea seismicity, ice noise, and marine mammal population and migration.
The International Quiet Ocean Experiment (IQOE) is a global scientific research program aimed at improving understanding of the distributions of sounds in the ocean, and studying the effects of underwater noise pollution on marine life. The program has worked on promoting research, observations, and modelling to advance understanding of ocean ...
Chapman helped to analyze the data from the recordings in the 1980s and discovered the data contained a “gold mine” of information about many kinds of sound in the ocean, including from marine ...
Output of a computer model of underwater acoustic propagation in a simplified ocean environment. A seafloor map produced by multibeam sonar. Underwater acoustics (also known as hydroacoustics) is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries.
The SOFAR channel (short for sound fixing and ranging channel), or deep sound channel (DSC), [1] is a horizontal layer of water in the ocean at which depth the speed of sound is at its minimum. The SOFAR channel acts as a waveguide for sound, and low frequency sound waves within the channel may travel thousands of miles before dissipating.
The ocean-like quality of seashell resonance is due in part to the similarity between airflow and ocean movement sounds. The association of seashells with the ocean likely plays a further role. Resonators attenuate or emphasize some ambient noise frequencies in the environment, including airflow within the resonator and sound originating from ...
AMODE, the "Acoustic Mid-Ocean Dynamics Experiment" (1990-1), was designed to study ocean dynamics in an area away from the Gulf Stream, and SYNOP (1988-9) was designed to synoptically measure aspects of the Gulf Stream. The colors show a snapshot of sound speed at 300 metres (980 ft) depth derived from a high-resolution numerical ocean model ...