Search results
Results from the WOW.Com Content Network
In genetics, the coefficient of coincidence (c.o.c.) is a measure of interference in the formation of chromosomal crossovers during meiosis. It is generally the case that, if there is a crossover at one spot on a chromosome, this decreases the likelihood of a crossover in a nearby spot. [1] This is called interference.
Crossover interference is the term used to refer to the non-random placement of crossovers with respect to each other during meiosis.The term is attributed to Hermann Joseph Muller, who observed that one crossover "interferes with the coincident occurrence of another crossing over in the same pair of chromosomes, and I have accordingly termed this phenomenon ‘interference’."
The Kosambi mapping function was introduced to account for the impact played by crossover interference on recombination frequency. It introduces a parameter C, representing the coefficient of coincidence, and sets it equal to 2r. For loci which are strongly linked, interference is strong; otherwise, interference decreases towards zero. [5]
There are two popular and overlapping theories that explain the origins of crossing-over, coming from the different theories on the origin of meiosis.The first theory rests upon the idea that meiosis evolved as another method of DNA repair, and thus crossing-over is a novel way to replace possibly damaged sections of DNA. [9]
The Kate Spade Outlet sitewide sale has great gifting ideas and prices that are beating Black Friday
It's a special week of football so it deserves a special edition of the pod. Sal Vetri joins Matt Harmon to breakdown every fantasy angle from the four games taking place on Thanksgiving and Black ...
3. Plan your withdrawal strategy. Most retirement strategies plan for saving, not spending. So it’s not always easy to remember that there will come a time you have to spend the money you’ve ...
In population genetics, the Hill–Robertson effect, or Hill–Robertson interference, is a phenomenon first identified by Bill Hill and Alan Robertson in 1966. [1] It provides an explanation as to why there may be an evolutionary advantage to genetic recombination .