Search results
Results from the WOW.Com Content Network
In approximate arithmetic, such as floating-point arithmetic, the distributive property of multiplication (and division) over addition may fail because of the limitations of arithmetic precision. For example, the identity 1 / 3 + 1 / 3 + 1 / 3 = ( 1 + 1 + 1 ) / 3 {\displaystyle 1/3+1/3+1/3=(1+1+1)/3} fails in decimal arithmetic , regardless of ...
The FOIL method is a special case of a more general method for multiplying algebraic expressions using the distributive law. The word FOIL was originally intended solely as a mnemonic for high-school students learning algebra. The term appears in William Betz's 1929 text Algebra for Today, where he states: [2]
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]
In most scenarios, the entries are numbers, but they may be any kind of mathematical objects for which an addition and a multiplication are defined, that are associative, and such that the addition is commutative, and the multiplication is distributive with respect to the addition.
The cross product is anticommutative (that is, a × b = − b × a) and is distributive over addition, that is, a × (b + c) = a × b + a × c. [1] The space together with the cross product is an algebra over the real numbers, which is neither commutative nor associative, but is a Lie algebra with the cross product being the Lie bracket.
An element x is called a dual distributive element if ∀y,z: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). In a distributive lattice, every element is of course both distributive and dual distributive. In a non-distributive lattice, there may be elements that are distributive, but not dual distributive (and vice versa).
In mathematics, a category is distributive if it has finite products and finite coproducts and such that for every choice of objects,,, the canonical map [,]: + (+)is an isomorphism, and for all objects , the canonical map is an isomorphism (where 0 denotes the initial object).
Conversely, if this "distributive property" holds for all non-negative real numbers, and , then the set is convex. [6] An example of a non-convex set such that +. The figure to the right shows an example of a non-convex set for which +.