Search results
Results from the WOW.Com Content Network
In approximate arithmetic, such as floating-point arithmetic, the distributive property of multiplication (and division) over addition may fail because of the limitations of arithmetic precision. For example, the identity 1 / 3 + 1 / 3 + 1 / 3 = ( 1 + 1 + 1 ) / 3 {\displaystyle 1/3+1/3+1/3=(1+1+1)/3} fails in decimal arithmetic , regardless of ...
The FOIL method is a special case of a more general method for multiplying algebraic expressions using the distributive law. The word FOIL was originally intended solely as a mnemonic for high-school students learning algebra. The term appears in William Betz's 1929 text Algebra for Today, where he states: [2]
In most scenarios, the entries are numbers, but they may be any kind of mathematical objects for which an addition and a multiplication are defined, that are associative, and such that the addition is commutative, and the multiplication is distributive with respect to the addition.
This can be computed by hand using the distributive property of multiplication over addition and combining like terms, but it can also be done (perhaps more easily) with the multinomial theorem. It is possible to "read off" the multinomial coefficients from the terms by using the multinomial coefficient formula.
An element x is called a dual distributive element if ∀y,z: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). In a distributive lattice, every element is of course both distributive and dual distributive. In a non-distributive lattice, there may be elements that are distributive, but not dual distributive (and vice versa).
This property is also sometimes called the diamond property, after the shape of the diagram shown on the right. Some authors reserve the term diamond property for a variant of the diagram with single reductions everywhere; that is, whenever a → b and a → c, there must exist a d such that b → d and c → d. The single-reduction variant is ...
In mathematics, the associative property [1] is a property of some binary operations that means that rearranging the parentheses in an expression will not change the result. In propositional logic , associativity is a valid rule of replacement for expressions in logical proofs .
To see that the expanded product equals the sum on the first line, apply the distributive law to the product. This expands the product into a sum of monomials of the form x a 1 x 2 a 2 x 3 a 3 ⋯ {\displaystyle x^{a_{1}}x^{2a_{2}}x^{3a_{3}}\cdots } for some sequence of coefficients a i {\displaystyle a_{i}} , only finitely many of which can be ...