enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Helmholtz's theorems - Wikipedia

    en.wikipedia.org/wiki/Helmholtz's_theorems

    Helmholtz's three theorems are as follows: [1] Helmholtz's first theorem The strength of a vortex line is constant along its length. Helmholtz's second theorem A vortex line cannot end in a fluid; it must extend to the boundaries of the fluid or form a closed path. Helmholtz's third theorem

  3. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.

  4. Fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Fluid_mechanics

    Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [ 1 ] : 3 It has applications in a wide range of disciplines, including mechanical , aerospace , civil , chemical , and biomedical engineering , as well as geophysics , oceanography , meteorology , astrophysics ...

  5. Milton Van Dyke - Wikipedia

    en.wikipedia.org/wiki/Milton_Van_Dyke

    Milton Denman Van Dyke (August 1, 1922 – May 10, 2010) was Professor of the Department of Aeronautics and Astronautics at Stanford University. [5] He was known for his work in fluid dynamics, especially with respect to the use of perturbation analysis in aerodynamics.

  6. Turbulence modeling - Wikipedia

    en.wikipedia.org/wiki/Turbulence_modeling

    In computational fluid dynamics, the k–omega (k–ω) turbulence model [10] is a common two-equation turbulence model that is used as a closure for the Reynolds-averaged Navier–Stokes equations (RANS equations). The model attempts to predict turbulence by two partial differential equations for two variables, k and ω, with the first ...

  7. Pressure-gradient force - Wikipedia

    en.wikipedia.org/wiki/Pressure-gradient_force

    In fluid mechanics, the pressure-gradient force is the force that results when there is a difference in pressure across a surface. In general, a pressure is a force per unit area across a surface. A difference in pressure across a surface then implies a difference in force, which can result in an acceleration according to Newton's second law of ...

  8. D'Alembert's paradox - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_paradox

    A physical paradox indicates flaws in the theory.. Fluid mechanics was thus discredited by engineers from the start, which resulted in an unfortunate split – between the field of hydraulics, observing phenomena which could not be explained, and theoretical fluid mechanics explaining phenomena which could not be observed – in the words of the Chemistry Nobel Laureate Sir Cyril Hinshelwood.

  9. Compressible flow - Wikipedia

    en.wikipedia.org/wiki/Compressible_flow

    Compressible flow (or gas dynamics) is the branch of fluid mechanics that deals with flows having significant changes in fluid density.While all flows are compressible, flows are usually treated as being incompressible when the Mach number (the ratio of the speed of the flow to the speed of sound) is smaller than 0.3 (since the density change due to velocity is about 5% in that case). [1]