enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    Deming regression (total least squares) also finds a line that fits a set of two-dimensional sample points, but (unlike ordinary least squares, least absolute deviations, and median slope regression) it is not really an instance of simple linear regression, because it does not separate the coordinates into one dependent and one independent ...

  3. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    The better the linear regression (on the right) fits the data in comparison to the simple average (on the left graph), the closer the value of R 2 is to 1. The areas of the blue squares represent the squared residuals with respect to the linear regression. The areas of the red squares represent the squared residuals with respect to the average ...

  4. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  5. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.

  6. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    The p-value is the probability that a test statistic which is at least as extreme as the one obtained would occur under the null hypothesis. At a significance level of 0.05, a fair coin would be expected to (incorrectly) reject the null hypothesis (that it is fair) in 1 out of 20 tests on average.

  7. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    In simple linear regression, p=1, and the coefficient is known as regression slope. Statistical estimation and inference in linear regression focuses on β . The elements of this parameter vector are interpreted as the partial derivatives of the dependent variable with respect to the various independent variables.

  8. Linear predictor function - Wikipedia

    en.wikipedia.org/wiki/Linear_predictor_function

    The basic form of a linear predictor function () for data point i (consisting of p explanatory variables), for i = 1, ..., n, is = + + +,where , for k = 1, ..., p, is the value of the k-th explanatory variable for data point i, and , …, are the coefficients (regression coefficients, weights, etc.) indicating the relative effect of a particular explanatory variable on the outcome.

  9. Design matrix - Wikipedia

    en.wikipedia.org/wiki/Design_matrix

    The design matrix has dimension n-by-p, where n is the number of samples observed, and p is the number of variables measured in all samples. [4] [5]In this representation different rows typically represent different repetitions of an experiment, while columns represent different types of data (say, the results from particular probes).