Search results
Results from the WOW.Com Content Network
Can use Theano, Tensorflow or PlaidML as backends Yes No Yes Yes [20] Yes Yes No [21] Yes [22] Yes MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks: 1992 Proprietary: No Linux, macOS, Windows: C, C++, Java, MATLAB: MATLAB: No No Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder [23] No Yes [24 ...
Julia is a language launched in 2012, which intends to combine ease of use and performance. It is mostly used for numerical analysis, computational science, and machine learning. [6] C# can be used to develop high level machine learning models using Microsoft’s .NET suite. ML.NET was developed to aid integration with existing .NET projects ...
Tools. Tools. move to sidebar hide. Actions Read; ... Deep learning software (1 C, 22 P) N. ... Pages in category "Data mining and machine learning software"
TensorFlow serves as a core platform and library for machine learning. TensorFlow's APIs use Keras to allow users to make their own machine-learning models. [33] [43] In addition to building and training their model, TensorFlow can also help load the data to train the model, and deploy it using TensorFlow Serving. [44]
Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
PyTorch is a machine learning library based on the Torch library, [4] [5] [6] used for applications such as computer vision and natural language processing, [7] originally developed by Meta AI and now part of the Linux Foundation umbrella.
Keras allows users to produce deep models on smartphones (iOS and Android), on the web, or on the Java Virtual Machine. [8] It also allows use of distributed training of deep-learning models on clusters of graphics processing units (GPU) and tensor processing units (TPU) .