Search results
Results from the WOW.Com Content Network
A similar definition applies to space curves and curves in n-dimensional Euclidean space. The point where the tangent line and the curve meet or intersect is called the point of tangency. The tangent line is said to be "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point.
In geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency : internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the ...
The tangent space may then be defined as the dual space of /. While this definition is the most abstract, it is also the one that is most easily transferable to other settings, for instance, to the varieties considered in algebraic geometry.
In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems , and play an important role in many geometrical constructions and proofs .
In geometry, the tangential angle of a curve in the Cartesian plane, at a specific point, is the angle between the tangent line to the curve at the given point and the x-axis. [1] (Some authors define the angle as the deviation from the direction of the curve at some fixed starting point.
In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of ...
In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two " infinitesimally adjacent" curves, meaning the limit of intersections of ...
The definition of the tangent cone can be extended to abstract algebraic varieties, and even to general Noetherian schemes. Let X be an algebraic variety, x a point of X, and (O X,x, m) be the local ring of X at x. Then the tangent cone to X at x is the spectrum of the associated graded ring of O X,x with respect to the m-adic filtration: