enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hidden Markov model - Wikipedia

    en.wikipedia.org/wiki/Hidden_Markov_model

    Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]

  3. Machine learning in bioinformatics - Wikipedia

    en.wikipedia.org/wiki/Machine_learning_in...

    In an HMM, the state process is not directly observed – it is a 'hidden' (or 'latent') variable – but observations are made of a state‐dependent process (or observation process) that is driven by the underlying state process (and which can thus be regarded as a noisy measurement of the system states of interest). [7]

  4. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    A hidden Markov model is a Markov chain for which the state is only partially observable or noisily observable. In other words, observations are related to the state of the system, but they are typically insufficient to precisely determine the state. Several well-known algorithms for hidden Markov models exist.

  5. Category:Hidden Markov models - Wikipedia

    en.wikipedia.org/wiki/Category:Hidden_Markov_models

    Download as PDF; Printable version ... Pages in category "Hidden Markov models" The following 8 pages are in this category, out of 8 total. ... not reflect recent ...

  6. Multiple sequence alignment - Wikipedia

    en.wikipedia.org/wiki/Multiple_sequence_alignment

    A profile hidden Markov model (HMM) modelling a multiple sequence alignment. A hidden Markov model (HMM) is a probabilistic model that can assign likelihoods to all possible combinations of gaps, matches, and mismatches, to determine the most likely MSA or set of possible MSAs. HMMs can produce a single highest-scoring output but can also ...

  7. Recursive Bayesian estimation - Wikipedia

    en.wikipedia.org/wiki/Recursive_Bayesian_estimation

    The following picture presents a Bayesian network of a HMM. Hidden Markov model. Because of the Markov assumption, the probability of the current true state given the immediately previous one is conditionally independent of the other earlier states.

  8. Hierarchical hidden Markov model - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_hidden_Markov...

    The hierarchical hidden Markov model (HHMM) is a statistical model derived from the hidden Markov model (HMM). In an HHMM, each state is considered to be a self-contained probabilistic model. More precisely, each state of the HHMM is itself an HHMM. HHMMs and HMMs are useful in many fields, including pattern recognition. [1] [2]

  9. Forward–backward algorithm - Wikipedia

    en.wikipedia.org/wiki/Forward–backward_algorithm

    The forward–backward algorithm is an inference algorithm for hidden Markov models which computes the posterior marginals of all hidden state variables given a sequence of observations/emissions ::=, …,, i.e. it computes, for all hidden state variables {, …,}, the distribution ( | :).